
IntroductIon

Recent work in psychological testing,3 genetic studies,4 magnetic resonance (MR) imaging,5 positron emission tomography 
(PET) imaging,6 cerebral spinal fluid (CSF) measurements,7 cardiovascular status8 and others have yielded tremendous 

amounts of diagnostic data for diagnosing and staging dementias, especially Alzheimers disease (AD). Moreover, many 
of these studies now also include longitudinal information.3, 9 This has lead to a problem often referred to as the curse of 
dimensionality, where the size (number of dimensions) of the dataset makes it difficult to do various numerical analysis on the 
data. This in turn makes it increasingly difficult to draw consistent conclusions from the dataset. Statistical analysis together 
with clinical disease models have helped with determine how the different sets of diagnostic information interacts with one 
another but they require a large number of ad hoc assumptions and therefore does not lend itself well to large scale Medical 
Imaging-based features. These problems become even more important when trying to use machine learning techniques 
because at some point the predictive power of the model ceases to increase even though we’re adding more information 
or dimensions. The question is then about how to select the ”correct” features to maximize predictive power. This paper 
leverages existing sparsifying machine learning techniques with temporal priors,1 built specifically for progressive disease 
models, such as AD, together with multivariate tensor-based morphometric (mTBM) features10 of the Hippocampus to try and 
predict AD progression up to 48 months from the baseline MRI measurement. The goal is to evaluate the predictive power 
of mTBM against those of cortical thickness and other FreeSurfer-
based features, demographic information (sex and age) as well as 
genetic information (ApoE-ε4 Copies).

Methods

AFNI DATA: Data used in the preparation of this article were 
obtained from the Alzheimers Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu).

• 616 subjects
• M06, 606 M12, 533 for M24, 364 for M36 and 97 for M48. 

90% of the data was used for training and 10% used for testing.
• 20 different selection splits of training and testing.
• More information about the demographics and patient selection 

is available in Zhou et al 2013.1

cFSGL (convex Fused Sparse Group Lasso) : 
• Prediction of each Time Point can be seen as a Task
• The multi-time point outcomes prediction can be reformulated 

as a Mult-task learning problem
• Performs much needed Dimension Reduction via the 

sparsifying Group Lasso penalty
• Simultaneously trains all time points (i.e. performs all tasks 

simultaenously) to preserve temporal smoothness
• Accomodates missing time points in training data

Multivariate Tensor-based Morphometry (mTBM) 
features of the Hippocampal Surface: 

• Hippocampus Segmentation via FSL11

• Parametric Meshes to Model Hippocampal Shapes
• Novel inverse consistent surface fluid registration2

• mTBM and radial distance computed via surface 
deformation analysis2

results

• Predictions using mTBM significantly outperform 
prediction without using mTBM (Fig. 1 and 2)

• Improved prediction accuracy as shown via nMSE, 
wR and rMSE in Table 1 and Fig. 4.

• Average weights for one of the mTBM surface features across the 20 trials 
is shown in Fig. 3.

dIscussIons and conclusIons

• Improved performance by merging fused mult-task learning with temporal 
smoothing and Novel AD sensitive surface mTBM maps

• Achieved some of the highest performing predictions based on baseline 
data only and is consistent with our survey of other comparable studies.1

• Need to investigate more about how to meaningfully incorporate mTBM 
map weights into the machine learning algorithm, to encode for 
neighborhood connectivity. (Currently, we use one continuous 
vector for all features)

• Serves as an illustration of how machine learning methods can 
be used to perform dimension reduction and how spatial data 
can be used directly. Possible applications in fMRI, fcMRI and 
other population studies

• Need more methods in analyzing the resultant weights, currently 
exploring stability selection.

• Weights analysis can also be used to optimize algorithm by 
providing a more reasonable starting point during training.
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Figure 4:
 Bar Chart of the rMSE of predictions with and without mTBM features by time point
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