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[from the EDITOR]

F
irst of all, do not be alarmed: this 
is not about an imminent gov-
ernment takeover of the IEEE 
Signal Processing Society! 

I am, of course, talking about 
online social networks and their relevance 
to our community. A quick search through 
some of the most popular among those, 
e.g., LinkedIn, Facebook, or Twitter, turns 
up increasing numbers of our digital sig-
nal processing colleagues, sometimes 
greeted with dismay by the younger set in 
those communities (“Even my professor is 
on Facebook!”). Those of you who attend-
ed the 35th International Conference on 
Acoustics, Speech, and Signal Processing 
(ICASSP) may have participated in the 

IEEE Thematic Meetings on Signal 
Processing (THEMES) workshop, which 
provided evidence that, as a community, 
we find many interesting research issues 
to explore in these emerging online sys-
tems. But here I’m not talking about what 
our research can do for online social net-
works but rather about what online social 
networks can do for our research.

Just before I headed to Dallas for ICASSP, 
I had interesting discussions with some col-
leagues. I learned how, in communications/
journalism conferences, participants in this 
field routinely exchange comments and 
observations on what is being presented and 
discussed, immediately, real time, via Twitter. 
This raised the obvious question: Why not us?

So, with this in mind, at ICASSP I set 
out to explore our own use of these social 

networks for research interactions. For 
this highly nonscientific endeavor I chose 
Twitter, primarily because of the low effort 
involved in posting (especially if one does 
not aim at sending clever and/or informa-
tive tweets). It is also easy to search for 
specific tags (#icassp2010 anyone?), so I 
was hoping to find out quickly what the 
buzz was at the conference.

The result of this survey? Including 
me, probably just a handful of people were 
tweeting from ICASSP about ICASSP.

Leave aside the issue of whether any 
of us should use a specific online social 
networking tool. The larger issue is what 
these tools, present and future, mean for 
our community and our work, and 

Socializing Digital Signal Processing

Antonio Ortega
Area Editor, Feature Articles
antonio.ortega@sipi.usc.edu

ahttp://signalprocessingsociety.org/
publications/periodicals.spm
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[president’s MESSAGE]
Mostafa (Mos) Kaveh

2010–2011 SPS President
mos@umn.edu

T
he raison d’être for each of 
the IEEE Signal Processing 
Society’s (SPS’s) two major 
conferences, the International 
Conference on Acoustics, 

Speech and Signal Processing (ICASSP) 
and the International Conference on 
Image Processing (ICIP), is a forum for 
the exchange of technical information 
through contributed, invited, and tutorial 
sessions. However, these meetings, and 
particularly ICASSP, also serve another 
important function; they are venues for 
administrative and planning meetings for 
the Society’s myriad boards and commit-
tees. Following are some highlights, deci-
sions, and plans from the administrative 
meetings at ICASSP in Dallas last March.

The SPS has one of the healthiest fi-
nancial positions in the IEEE. This good 
fortune is the results of the popularity and 
success of our products and services as 
well as sound management and prudent 
investment of reserves over many years. It 
is worth mentioning that while the Soci-
ety’s reserves are strong, only a small por-
tion of those are accessible for our use and 
there are constraints as to how we can use 
them. Operational budgets do face occa-
sional challenges, largely because of rules 
that guide the creation of budgets, as well 
as potential challenges of new benefits, 
such as free electronic publications, are 
reflected on the bottom line. Nevertheless, 
the Society is utilizing funds allowable by 
IEEE rules on new initiatives to benefit 
the members and create greater visibil-
ity to the discipline of signal processing.  
Among the initiatives being planned is an 
expanded program of tutorials and other 
learning resources of value for the broad 
range of our constituency. 

Speaking of publications, the submis-
sions and the number of published pages 
in most of the Society’s journals and IEEE 
Signal Processing Magazine continue to 
grow at astounding rates. This has cre-
ated significant challenges for the size of 
some of the print copies and for editorial 
and production loads. The SPS Publica-
tions Board continues to explore avenues 

for better review and editorial manage-
ment and tools. For example, to manage 
the very large volume of submissions, the 
IEEE Transactions on Signal Process-
ing Editorial Board has reorganized into 
specific technical areas with area edi-
tors selected to assist the editor-in-chief. 
Of course, we are constantly exploring 
avenues for providing high impact and 
high visibility publications. IEEE Signal 
Processing Magazine in particular con-
tinues to innovate by providing a range of 
high-quality material and topics of broad 
interest. For example, in April, CBS Sun-
day Morning did a story about the SETI 
Institute and radio telescopes. We had an 
article on that same subject in the March 
issue of the magazine.

I had the pleasure of visiting the IEEE 
Signal Processing Society office last April 
and had the chance to meet many of the 
staff who make our publications and other 

services and operations happen. We are 
fortunate to have the support of outstand-
ing staff within the Society and from IEEE 
operations such as the Periodicals Depart-
ment, so it was great to be able to thank 
them, in person, on behalf of the signal 
processing community.

Acting on an initiative by the IEEE In-
formation Theory Society (ITS), the Board 
of Governors approved a two-year pilot 
project of closer collaboration between our 
two Societies through the establishment 
of mutual liaisons. Prof. Urbashi Mitra is 
the liaison from the ITS to the SPS; Prof. 
Nikos Sidiropoulos is the SPS liaison to 
the ITS. The two liaisons will explore op-
portunities for joint activities such as 
sponsorship of workshops and other ini-
tiatives in the many areas of joint interest 
to our Societies.

The Society’s Board of Governors 
ratified the election of the incoming vice 
president, Awards and Membership (2011–
2013), Dr. John Treichler. Further, the 
current vice president, Awards and Mem-
bership, Prof. Mike Zoltowski, appointed 
the directors of the two new committees 
under the Membership Board. The Mem-
bership Services Committee is directed 
by Prof. Shuvra Bhattacharyya, and the 
Industry Relations Committee is directed 
by Dr. Alex Acero.

I am looking forward, with anticipa-
tion, to an exciting ICIP 2010 in September 
in Hong Kong, along with visits to some of 
our Chapters and active locations in China 
before the conference. I will provide more 
information on these plans in my Septem-
ber 2010 column.  

Enjoy the rest of the summer! [SP]
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March Madness—The Good Kind

AMONG THE INITIATIVES 
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[special REPORTS]

D
igital signal processing 
(DSP) is having a major 
impact on advancing the 
state of the art of medical 
imaging.

The advantages of DSP are well estab-
lished: They operate in real time, they’re 
highly reliable, and they are very energy 
efficient. They’re also relatively inexpen-
sive. But the medical imaging market con-
tinues to push for more technical 
innovation. That’s putting more focus on 
higher image quality and designing 
smaller systems.

“Over the next few years, we anticipate 
a significant shift in medical imaging 
applications from traditional imaging 
modalities limited to basic diagnostic 
functions to a new ecosystem comprised 
of small form factor, highly accurate por-
table devices,” says Susie Inouye, research 
director and president of Databeans, a 
semiconductor market research firm.

The rapid development of portable 
systems has already resulted in handheld, 
and, in some cases, even wearable, medi-
cal and home monitoring devices. DSPs 
will be pervasive in all of these systems. 
As a result, medical equipment manufac-
turers and chip vendors are working hard 
to expand medical diagnostic applica-
tions and introduce new products to a 
growing market.

General Electric (GE) earlier this year 
unveiled its vScan machine, which is 
about the size of a cell phone and sells for 
under US$10,000. Siemens has upgraded 
the Acuson P10 handheld scanner it first 
introduced three years ago.

Toshiba recently entered the portable 
ultrasound market with a new laptop sys-
tem. Called Viamo, it’s designed mainly for 
use with immobile patients that need a 

high-end ultrasound exam. Hitachi also 
offers a laptop-size system.

GE Sensing & Inspection Tech nologies 
has introduced a lightweight (13 lb) and 
portable digital radiography tool, the 
DXR250V, that features shorter shot times 
for minimal radiation exposure in applica-
tions that were previously limited to com-
puted radiography or film. The new GE 
unit can be connected to a laptop to pro-
duce images for instant review.

A much smaller firm, Signostics, 
recently received U.S. Food and Drug 
Administration (FDA) approval of its cell 
phone-size Signos Personal Ultrasound 
system, which weighs about a half 
a pound.

“Signostics overcame some difficult 
product design challenges in developing 
its palm-sized ultrasound product,” says 
Patrick O’Doherty, healthcare segment 
director of Analog Devices, which 
worked closely with Signostics to pro-
vide key signal processing technologies 
for the data conversion, signal condi-
tioning, and sensing necessary to 
achieve its design. The Signos covers 
several medical applications, including 
abdominal assessments such as bladder, 
abdominal aortic aneurysm screening, 
and trauma assessment; musculoskele-
tal, and basic obstetrics.

SonoSite Inc., another player in the 
point-of-care market, offers a hand-carried 
ultrasound system that’s used mainly in 
doctor’s offices.

Philips Medical introduced a handheld 
ultrasound device nearly ten years ago. 
Called OptiGo, it was taken off the market, 
reportedly because of doubts at the time 
about the image quality of a medical imag-
ing device that was so small.

DIFFERENT SYSTEMS, APPLICATIONS
There are several medical imaging tech-
nologies.

Magnetic resonance imaging (MRI) 
offers extraordinarily clear images of the 
human body and is used to diagnose a 
wide range of illnesses and injuries. More 
than 60 million diagnostic MRI procedures 
are performed worldwide each year. 

A noninvasive technique, MRI pro-
duces images of the human body without 
using ionizing radiation. Because of its 
ability to tailor an exam to meet specific 
imaging parameters such as the field of 
view, it is the method of choice to diagnose 
many different medical conditions, includ-
ing cancerous tumors, torn ligaments, and 
Alzheimer’s disease.

Computed tomography (CT) is another 
form of scanning that produces three-di-
mensional images of internal parts of the 
body. It’s being used increasingly as the 
technology improves to provide clearer, 
more detailed pictures for analysis and 
diagnosis of internal organs, bones, soft 
tissue, and blood vessels. “Advancements 
in CT scan imaging will fundamentally 
change the practice and economics of 
diagnostic imaging,” says Susie Inouye of 
Databeans. (Today, more than 62 million 
medical CT scan exams are done in the 
United States annually, compared to three 
million in 1980.)

Advancements in systems integration 
have already helped to significantly boost 
the number of pictures (or “slice counts”) 
that can be taken using CT machines, 
improving image detail and quality.

DIGITAL SIGNAL 
PROCESSING IS HAVING 
A MAJOR IMPACT ON 

ADVANCING THE STATE 
OF THE ART OF MEDICAL 

IMAGING.
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DSPs See Gains in Their Impact 
on New Medical Imaging Designs
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Digital X-ray is a major step up in 
diagnostic technology from convention-
al X-ray systems, where signal degrada-
tion from each component consumes 
more than 60% of the original X-ray 
signal. By adding a digital detector to 
digital X-ray imaging, more than 80% 
of the original image information is 
captured. The use of digital X-rays also 
reduces patient radiation dosages and 
reduces diagnosis time by eliminating 
photographic processing.  High-
performance DSPs can control the func-
tions and signal conditioning to acquire 
and improve the clarity of digital X-ray 
images. Another key benefit of digital 
X-ray is its ability to store and transfer 
the digital images.

Diagnostic ultrasound imaging sys-
tems generate and transmit acoustic waves 
and capture reflections that are then trans-
formed into visual images. The signal pro-
cessing on the received acoustic waves 
include interpolation, decimation, data fil-
tering and reconstruction. Programmable 
DSPs and systems-on-a-chip (SoCs) are 
designed to implement complex mathe-
matical algorithms in real time to effi-
ciently address all the processing needs of 
these systems.

Another medical imaging system is 
positron emission tomography (PET). Like 
MRI, it is a noninvasive diagnostic tech-
nology. It uses radiation emissions from 
the body (generated by radioactive chemi-
cal elements consumed by the patient) to 
produce physiologic images of specific 
organs or tissues.

DSPs are normally used in PET sys-
tems to handle varying input amplifier 
gain and to control the photomultiplier 
tube high-voltage supply and motion con-
trol for detector ring assembly and patient 
entry/exit through the actual system. DSPs 
can also be used for PET scanner control 
and signal processing units. 

Westside Medical Associates of Los 
Angeles and Westside Medical Imaging 
(WMI) of Beverly Hills have recently 
reported the benefit of early PET scanning 
to identify Alzheimer’s in its early, more 
treatable phase. “The research investiga-
tors at the New York University (NYU) 
Langone Medical Center have confirmed 
our long-held belief that we can use 

advanced imaging for early identification 
of Alzheimer’s disease in patients that have 
not yet developed symptoms,” says Dr. 
Norman Lepor, professor of medicine at 
the Geffen School of Medicine at the 
University of California, Los Angeles and 
codirector at WMI. 

The NYU research team has been 
using PET with a fluorescent imaging 
agent called Pittsburgh Compound B 
that lights up clumps of a protein called 
beta amyloid that is a characteristic 
f inding of  Alzheimer ’s  d isease . 
According to the researchers, not all 

patients with beta amyloid plaques in 
their brain develop Alzheimer’s.

Siemens has developed a new imaging 
system called the Somatom Definition 
Flash scanner that uses a relatively low 
dose of radiation and only targets a specific 
area of the body (see “Radiation Exposure 
May Require Device Design Changes”).

DSP VENDORS SEE GAINS  
Several major chip companies are working 
to advance the state of the art in improv-
ing the accuracy and efficiency of medical 
imaging systems.

RADIATION EXPOSURE MAY REQUIRE DEVICE DESIGN CHANGES

Radiation risk has become a big issue in recent months for patients and a hot topic 
among medical imaging system manufacturers, radiologists, and physicians.

Federal regulators believe CT scans may be necessary to detect a myriad of 
health issues, but they also detect growing evidence that exposing people to radi-
ation may increase their risk of getting cancer in the future.

So much so that the U.S. FDA Center for Devices and Radiological Health (CDRH) 
has kicked off a radiation reduction initiative that could force manufacturers of 
imaging devices to redesign their products so they can alert healthcare profession-
als when radiation doses exceed recommended levels.

The FDA held the first in a series of conferences in early April to discuss how to 
protect patients from unnecessary radiation exposures.

The FDA says its goal is to support the benefits associated with medical 
imaging while minimizing the risks. “The amount of radiation Americans are 
exposed to from medical imaging has dramatically increased over the past 20 
years,” says CDRH Director Dr. Jeffrey Shuren. In fact, recent studies indicate 
the average American’s total radiation exposure has nearly doubled in the 
last three decades, largely due to CT scans and other next-generation imag-
ing tests.

For example, the radiation dose associated with a CT abdomen scan is the same 
as the dose from approximately 400 chest X-rays. In comparison, a dental X-ray 
requires approximately one-half the radiation dose of a chest X-ray. The FDA says 
it intends to issue targeted requirements for manufacturers of CT and fluoroscopic 
devices to incorporate important safeguards into the design of their machines to 
develop safer technologies and to provide appropriate training to support safe 
use by practitioners. The agency held the first in a series of public hearings in late 
March to solicit input on what requirements to establish.

In a bid to empower patients and increase awareness, the FDA is collaborating 
with other organizations to develop and disseminate a patient medical imaging 
history card. This tool, which will be available on the FDA’s Web site, will enable 
patients to track their own medical imaging history and share it with their physi-
cians, especially when it may not be included in their medical records.

The Medical Imaging and Technology Alliance (MITA), an association that repre-
sents manufacturers of medical imaging and radiation therapy systems, says it 
supports initiatives to reduce exposure to unnecessary radiation and minimize 
medical errors.

The American Society of Radiologic Technologists says it supports MITA’s efforts 
to incorporate a radiation dose check feature on all new CT products, as does 
the Alliance for Radiation Safety in Pediatric Imaging, which leads the Image 
Gently campaign to reduce radiation doses for children who undergo medical 
imaging exams.
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Texas Instruments (TI) has long been a 
leader in providing DSPs and related 
devices for medical imaging  applications 
and formed a Medical Imaging DSP Group 
in 2007. The following year, it launched a 
US$15 million medical university fund to 
have a “significant effect” in medical tech-
nology over the next three to five years.

Ken Nesteroff, TI’s DSP medical imag-
ing business development and marketing 
manager, says ultrasound is one of the bet-
ter examples of where DSP fit into medical 
imaging systems (see Figure 1).

“Of course, there are a lot of analog 
solutions and we build specific parts for 
that,” notes Nesteroff. “On the DSP side, 
we fit more into the back-end process-
ing. What you typically see is a giga-
hertz-class DSP in the B-mode, color 
flow, and Doppler functions, and some-
times the RF demodulation. The back-
end function is where you scan-convert 
the data for display. In a portable system, 
the industry has moved completely away 
from a PC back-end to a more system-
on-a-chip approach.”

TI is currently upgrading the embed-
ded processor software toolkit it intro-
duced in March 2009 to help medical 
diagnostic ultrasound manufacturers 
develop more accurate and cost-effective 
systems, and do it more quickly. Key to 
the new toolkit, says Nesteroff, will be 
advances in image processing.

TI also sees opportunities in medical 
imaging for its newest SoC architecture 
based on its multicore DSPs that inte-
grates fixed and floating point capabilities. 
Designed for communications infrastruc-
ture equipment, the new DSPs run at up 
to 1.2 GHz and provide an engine with up 
to 256 giga multiply-accumulate opera-
tions per second (GMACS) and 128 giga-
flops (GFLOPS). 

Analog Devices, a long-time collabora-
tor to the medical imaging industry, 
recently introduced a new current-to-dig-
ital converter chip that enables high slice 
count CT systems to capture real-time 
moving images—such as a beating 
heart—with a high degree of accuracy 
and detail. The chip changes photodiode 
array signals into digital signals and, 
according to Analog Devices, provides a 
50% reduction of CT detection system 

electronics cost, largely through a more 
highly integrated design when compared 
to older models.

“The important thing to remember 
about any imaging system that is going 
to be used in medical diagnostics is to 
maintain image quality with no loss of 
information that could be discernable to 
the physician,” says Tony Zarola, a stra-
tegic marketing manager with the 
Analog Devices Healthcare Group. 
Higher image resolution translates into 
more pixels, and Zarola says that means 
more data and higher demands on back-
end image processing.

An obvious goal is to reduce the expo-
sure (less scan time) to harmful X-ray 
images while obtaining more information 
during the scan. In terms of what this 
means for the electronics in the system, 
more scan lines means more channels, 
higher image resolution translates to 

more pixels, and a higher signal-to-noise 
radio provides less noise and therefore 
better contrast.

“More data being transmitted from 
the receivers, increasing the channel 
count requires increased bandwidths 
across the system,” adds Zarola. “This 
can cause challenges with transfer of 
data over existing infrastructures, which 
are limited in bandwidth.” 

The benefits of DSPs, he says, are 
significant, ranging from a reduction in 
bandwidth to the use of smart compres-
sion algorithms. (Lossy compression 
could be used, but then the resulting 
impact on image integrity would need 
to be characterized.) “For better image 
quality, various post-processing image 
enhancement algorithms that improve 
contrast or reduce the effects of system 
noise could be employed,” says Zaroloa. 
“Again, the challenge would be to keep 
the image integrity.”

A HUGE MARKET
Medical imaging is already a huge market 
and it continues to grow, largely due to 
advancements in the technology, and 
growing popularity of portable and hand-
carried imaging products. The global mar-
ket for medical imaging devices is 
projected to reach about US$37 billion by 
2015, according to a market study by 
Reportlinker.

MRI is expected it be the fastest grow-
ing imaging modality with a compound 
annual growth rate (CAGR) of 9.8% dur-
ing the period 2005–2015.

Another market research group, Global 
Industry Analysts, says the U.S., Japan, and 
Europe account for more than 85% of the 
world market installed base of CT scanners. 
According to Global Industry Analysts, the 
global CT scanner market is dominated by 
four companies: GE Healthcare, Siemens 
Healthcare, Toshiba Medical Systems, and 
Philips Healthcare. Other major players 
include Hitachi Medical Corp. and 
Shimadzu Medical Systems.

Rapid upgrades in technology have also 
had an impact on CT scanners. A key trend 
in the CT segment is the shift towards 
combination scanners, which are primar-
ily hybrid scanners comprising PET and 
CT imaging capabilities.

Global Industry Analysts says ultra-
sound has won a growing share of the 
medical imaging market since its intro-
duction in the early 1950s. The miniatur-
ization of ultrasound devices and 
continued incorporation of system elec-
tronics into ultrasound technology is a 
major trend and accounts for much of the 
success of this imaging technology.

The overall market for ultrasound 
equipment is near saturation levels in the 
United States; however, cardiology contin-
ues to represent a fast growing end-use 
segment of ultrasound with revenues in 
the United States projected to reach 
US$684 million in 2010. This market is 
essentially driven by the need for replacing 
and upgrading aging equipment with new, 
more technically advanced, systems. The 
U.S. and Europe collectively account for 
about 60% of the global medical ultra-
sound equipment market, although the 
Asia-Pacific markets are growing rapidly 
according to the market research firm.

THE USE OF DIGITAL X-RAYS 
ALSO REDUCES PATIENT 
RADIATION DOSAGES 

AND REDUCES DIAGNOSIS 
TIME BY ELIMINATING 

PHOTOGRAPHIC 
PROCESSING.
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[FIG1] This system block diagram is a reference design for DSP and other devices that Texas Instruments suggests can be used in 
an ultrasound medical imaging system design. (Figure used with permission.)

(continued on page 134)
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Miles N. Wernick, Charles A. Bouman, 
Richard M. Leahy, and James S. Duncan

The Roles of Signal Processing in Medical Imaging

E
xploratory surgery, an ap -
proach in which the physician 
looks directly within the 
patient for the source of an ail-
ment, was once the principal 

method of visualizing disease. While this 
approach still has its place, it has been 
largely supplanted by medical imaging, 
a vast arsenal of technologies capable of 
producing detailed and highly informa-
tive images of the body’s internal struc-
ture and function. 

Medical imaging uses a wide variety 
of physical phenomena, ranging from 
x-ray attenuation to acoustic wave propa-
gation, to measure a staggering number 
of variables relating to the patient’s 
health. The earliest medical images 
showed only structural information, 
such as the appearance of bones; howev-
er, many modern techniques can now 
evaluate intricate biological processes, 
such as metabolism, distribution of 
chemical receptors, abnormal heart 
motion, or deposition of amyloid plaque 
associated with Alzheimer’s disease.

Thus, medical imaging is used not 
only to diagnose disease; it also provides 
an essential tool for understanding hu-
man biology and is widely used to evalu-
ate the effectiveness of new drugs. In 
many instances, medical imaging is used 
to plan surgical procedures and even to 
guide these procedures while in progress. 
For example, in this issue, the article by 
Mountney et al. describes how image 
analysis can be used as an aid in robotic-
assisted minimally invasive surgery.

THE ROLE OF SIGNAL 
AND IMAGE PROCESSING
In the world of medical imaging, signal 
and image processing are involved in 

every stage of the process. Most types of 
medical images are computed as the 
solution of a complicated inverse prob-
lem. In some cases, the data from which 
the inverse problem is solved are them-
selves derived from significant signal-
processing steps. Once obtained, medical 
images are often analyzed and interpret-
ed automatically by sophisticated image-
processing and machine-learning 
techniques. In addition, signal process-
ing is an essential tool used in the design 
and evaluation of imaging devices, and in 
the assessment and prediction of diag-
nostic performance.

The general public—and indeed many 
of our colleagues in the signal-process-
ing field—are unaware of the degree to 
which signal and image processing play 
an essential and enabling role in medical 
imaging technology. And the importance 
of signal processing continues to grow 
rapidly as the technology continues to 
mature and advance, and as the medical 
field continues to be more accepting of 
the role of computers and technology in 
clinical practice.

In 1997, owing to rapid developments 
in the field, IEEE Signal Processing 
Magazine published a special issue 
devoted to medical imaging in which 
several of the basic types of imaging were 
introduced to the broader signal process-
ing community. Inspired by recent 
advances, we now revisit the topic, this 
time focusing on the diverse and expand-

ing roles that image processing plays in 
this important field.

OVERVIEW OF THIS SPECIAL ISSUE
Roughly speaking, the articles in this 
special issue are divided into two main 
groups. The first four articles discuss 
various ways that medical images are 
analyzed automatically by a computer. 
The last three articles describe how 
mathematical techniques contribute to 
formation of the images themselves.

The first article, by Mountney et al., 
describes how image analysis can be used 
in real time to guide minimally invasive 
surgery performed with robotic assis-
tance. In this work, a three-dimensional 
description of the patient’s tissue (which 
is soft and constantly deforming during 
surgery) is determined and tracked from 
stereo images taken with a laparoscope 
camera threaded through a small inci-
sion in the patient.

The second article, by Wernick et al., 
illustrates the growing and varied roles 
of machine-learning techniques in medi-
cal imaging, providing examples relating 
to computer-aided diagnosis, content-
based image retrieval, prediction of diag-
nostic accuracy, and, finally, the rapidly 
growing field of functional brain map-
ping, which is providing an unprecedent-
ed window into the workings of the 
human mind.

This leads directly into the next two 
articles, both of which pertain specifically 
to study of the brain. The third article in 
this issue, by Correa et al., describes 
mathematical techniques for integrating 
information gathered from a wide array of 
brain imaging techniques, such as func-
tional magnetic resonance imaging and 
electroencephalography. 

MEDICAL IMAGING IS USED 
NOT ONLY TO DIAGNOSE 

DISEASE, IT ALSO PROVIDES 
AN ESSENTIAL TOOL 

FOR UNDERSTANDING 
HUMAN BIOLOGY.

(continued on page 140)
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papers of no more than six (6) pages including title, authors’ names and contact,

abstract, introduction, background, proposed method, results, figures, and
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R
ecent advances 
i n  s u r g i c a l 
robotics have 
provided a plat-
form for ex -

t end ing  the  cur ren t 
cap  abilities of minimally 
invasive surgery by incor-
porating both preoperative 
and intraoperative imag -
ing data. In this tutorial 
article, we introduce tech-
niques for in vivo three- 
dimensional (3-D) tissue 
deformation recovery and 
tracking based on laparoscopic or endoscopic images. These 
optically based techniques provide a unique opportunity for 
recovering surface deformation of the soft tissue without the 
need of additional instrumentation. They can therefore be eas-
ily incorporated into the existing surgical workflow. 
Technically, the problem formulation is challenging due to 
nonrigid deformation of the tissue and instrument interaction. 
Current approaches and future research directions in terms of 
intraoperative planning and adaptive surgical navigation are 
explained in detail.

INTRODUCTION
Over the past two decades, 
technological innovations 
have played a major role in 
reshaping the general prac-
tice of surgery. Solid-state 
cameras and fiber optic 
devices have made mini-
mally invasive surgery 
(MIS) a reality. In MIS, spe-
cialized instruments are 
inserted into the anatomy 
through small access ports 
and operated under remote 
video guidance. By avoid-

ing large incisions, MIS greatly reduces patient trauma, post-
operative recovery period, and the risk of comorbidity. These 
advantages have made MIS a viable treatment option for a wider 
range of patients [1], [2].

Recently, robotic technologies have been used to overcome 
the limitations of traditional MIS tools and provide the control 
and maneuverability required for precise microsurgical tasks. 
Robotic devices represent one of the most promising enhance-
ments in modern operating theatres for MIS. They facilitate the 
performance of dexterity demanding procedures with improved 
repeatability and precision through the use of microprocessor 
controlled mechanical wrists. By using master-slave setups, sur-
gical robots have been shown to significantly improve the 

[Peter Mountney, Danail Stoyanov, and Guang-Zhong Yang]

[Introducing techniques based on 
laparoscopic or endoscopic images]
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 ergonomics in the operating theatre, enable the use of motion 
scaling and provide a unique platform for real-time navigation 
based on multimodal patient specific imaging and sensing data.

For performing complex procedures using robotic-assisted 
MIS, medical image computing plays an important role for 
improving the surgeon’s operating capabilities. Despite the 
advantages of robotic-assisted MIS instruments, performing 
microsurgical tasks in a highly dynamic environment is chal-
lenging. This is reflected in complex procedures such as robotic-
assisted, beating heart totally endoscopic coronary artery bypass 
(TECAB) surgery, for which, despite the apparent patient benefits, 
clinical uptake has been slow [3]. While imaging modalities such 
as intraoperative magnetic resonance imaging and computed 
tomography can provide accurate information about the tissue 
morphology, they are constrained by the operating environment 
mainly due to their size and accessibility. Optical techniques 
based on laparoscopic or endoscopic cameras provide a unique 
opportunity for recovering the morphology, as well as the struc-
ture of the soft tissue in situ. In MIS, recovering tissue deforma-
tion is essential for coregistering intraoperative and preoperative 
data. It is also important for providing intraoperative guidance 
and accurately fusing multimodality intraoperative information. 
With robotic assistance, the recovered tissue deformation can 
further be used for providing motion stabilization and prescrib-
ing dynamic active constraints to avoid critical anatomical struc-
tures such as nerves and blood vessels as illustrated in Figure 1.

In this tutorial article, we provide an explanation of the 
physical configuration of the optical imaging environment in 
MIS with a geometric camera model and camera calibration. 
This serves as the basis of techniques for recovering 3-D soft-tis-
sue deformation and relative pose of the laparoscopic cameras. 
We describe how these techniques can be used for tissue defor-
mation tracking and 3-D reconstruction, with specific focus on 
the use of a moving camera model for structure recovery. 
Quantitative validation is discussed to highlight the practical 
challenges involved for in vivo applications. To summarize we 
discuss the major challenges and future research directions, 
particularly in dealing with deformable tissue structures.

OPTICAL SETUP
The laparoscope camera used in MIS is 
typically inserted into the patient via a 
small incision or natural orifice. The sur-
geon maneuvers the external, proximal 
end of the laparoscope to navigate 
through the body via a video displays. 
The MIS environment is illuminated with 
a light source embedded in the laparo-
scope. Figure 2 shows the optical config-
uration of several laparoscopes and 
example images displayed to the surgeon. 
Quantitative measurements can be made 
from laparoscopic images only if the 
instrument has been accurately modeled 
and calibrated.

The camera of a laparoscope can be modeled by its optical 
characteristics called intrinsic parameters and its position and 
orientation in a world coordinate system called extrinsic param-
eters [4]. Typically, the pinhole projection model is used to 
describe the mapping of a 3-D point M5 [X  Y  Z  1 4T in homo-
geneous coordinates onto the image point m5 [x  y 1 4T  as a 
matrix multiplication

m5K cR t
0 1

dM5 PM, (1)

where K is a matrix of the intrinsic camera parameters and R
and t describe the extrinsic orientation of the device in the 
world coordinate system. Figure 2(e) shows a schematic illus-
tration of this model in a stereo configuration. Lens distortion 
can be effectively modeled using radial and tangential distortion 
coefficients [5], [6].

Surgeon

3-D Reconstruction
Morphology and Deformation

Localization

Navigation
Dynamic Active Constraints

Motion Compensation

Laparoscope Port Instrument Ports

Target Anatomy

[FIG1] A schematic diagram showing the information flow in 
robotic-assisted MIS. By using information from the laparoscopic 
cameras, it is possible to recover tissue deformation in 3-D, 
which permits intraoperative navigation, motion compensation 
and dynamic active constraints.

Image Plane

Tissue Surface

M

Illumination Lens

m
m′

Imaging Lens

(a) (b)

(d) (e)

(c)

[FIG2] (a) A 30° laparoscope, (b) a stereo laparoscope with two point light sources, (c) a 
0° laparoscope with circular light source, (d) example images acquired during MIS, and 
(e) schematic of a laparoscope with imaging optics observing a sample of tissue in 3-D.
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In general, the unknown parameters of the laparoscope 
model are estimated by a preoperative calibration process. To 
obtain these unknown parameters, certain constraints are usu-
ally imposed on the projection of points, with known coordi-
nates in the 3-D world, onto the image plane. There are several 
well-established algorithms for this procedure from the com-
puter vision communities and implementations of these meth-
ods are available online [7].

After calibration, the metric 3-D structure of the surgical 
scene can be recovered given the correspondence of image 
primitives [m and m’ in Figure 2(e)] among multiple views of 
the surgical site. This process is called triangulation [4], which 
is also illustrated in Figure 2(e).

RECOVERING SOFT TISSUE 3-D SHAPE
Recovering 3-D information from images is a long-standing 
problem in computer vision. Typical solutions are stimulated by 
our basic understanding of biological vision systems and the 

intrinsic relationship of how 2-D images are acquired from 3-D 
space. The early work of Marr [8] led to the establishment of 
shape-from-X, where different visual cues can be used to infer 
information about the shape and position of objects with respect 
to the camera. The wealth of research in this area has resulted 
in many publications [9]. In this section, we will only summa-
rize those approaches reported in MIS. 

Approaches to 3-D tissue surface reconstruction are summa-
rized in Table 1 and an example is shown in Figure 3(d). They 
can be broadly divided into passive and active techniques. Passive 
techniques do not introduce additional light or sensing devices 
into the MIS environment and are purely based on the existing 
images as observed by the operating surgeon. The two main 
visual cues that have been exploited are shading and stereo. 

For shape-from-shading (SFS), laparoscopic images do not 
obey many of the traditional assumptions used to simplify the 
bidirectional reflectance distribution function (BRDF). 
Lambertian reflectance is not compatible with specular reflec-
tions, which are common due to the mucus layer of the soft tis-
sue and the relatively high intensity of the laparoscopic light 
source. Furthermore, the assumption of a light source located at 
infinity is not satisfied due to the copositioning of the light source 
at the tip of the laparoscope. In addition, the camera cannot be 
assumed to perform orthographic projection as perspective effects 
and lens distortions are significant in laparoscopic images. 

Therefore, the special optical arrangement between the 
scope, illumination source, and the surgical scene must be used 
to simplify the image irradiance equation. This was first pro-

posed by Rashid and Berger in 1992 [10] 
where the light source and the optical 
centre of the camera were considered to 
be coincident. This approach was subse-
quently combined with the assumption 
that the BRDF is a monotonically decreas-
ing function with respect to the viewing 
angle [21]. More recent work has expand-
ed the camera projection model to incor-
porate lens distortion [15] and perspective 
projection [6], [16]. The assumption of 
coincident camera and light source posi-
tions has also been relaxed [23], although 
this requires the calibration of the relative 
positions [27].

One of the main drawbacks of SFS 
approaches in MIS is that the information 
recovered is not in a metric coordinate 
space and only relative surface orientation 
information can be measured. Passive ste-
reo techniques and SFS are complemen-
tary and can be combined to overcome 
this limitation [24].

Early work on stereo methods in MIS 
used a simple normalized cross-correlation 
algorithm [11]. Subsequently this was 
adapted to incorporate hierarchical 
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[FIG3] (a) A region tracked on the cardiac surface illustrating motion from the cardiac 
and respiratory cycles, (b) a region tracked on the liver illustrating motion resulting from 
respiration, (c) the tracked 3-D motion of a region on the surface of the heart, and (d) a 
dense stereo reconstruction of the tissue surface.

[TABLE 1] SUMMARY OF METHODS USED FOR 3-D 
RECONSTRUCTION FROM IMAGES IN MIS.

SFS ASSUMPTIONS
STEREO 
APPROACHES ACTIVE TECHNIQUE

ORTHOGRAPHIC [10] COMPUTATIONAL 
[11], [12]

FIDUCIAL [13], [14]

PERSPECTIVE
[6,] [15], [16]

SURFACE PRIORS 
[17]–[19], [21]

ONE SHOT [20], [22]

ILLUMINATION [23] CUE FUSION [6], [24] PROGRESSIVE 
[2], [25], [26]
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 solutions with a geometric surface prior and to recover the 3-D 
shape of the heart [17]–[19]. The use of explicit assumptions (e.g., 
smoothness) about the observed soft-tissue surfaces enables the 
reconstruction of homogenous tissue regions but does not handle 
discontinuities arising at instrument-tissue boundaries. To address 
this issue, methods based on a sparse set of salient features have 
been used to first recover a sparse 3-D reconstruction of the surgi-
cal site and then propagate this information to achieve a semi-
dense 3-D map [28]. 

It is worth noting that an important feature of MIS images is 
the abundance of specular reflections. They are view dependent and 
can cause significant errors in recovering 3-D structure and track-
ing deformation. It is therefore necessary to correctly identify these 
regions prior to stereo correspondence [19], [29]. Alternatively they 
can be used as constraints when the illumination direction is 
known or as a starting point in SFS algorithms [24], [27].

The main limitation of passive reconstruction techniques is 
that they have limited robustness when dealing with the dynam-
ic environment of MIS. For this reason, methods based on fidu-
cial markers or the use of structured lighting have been 
proposed. Fiducial markers are predominantly used for tempo-
ral tissue tracking, which is discussed in more detail in the fol-
lowing section. In terms of structured lighting, an overview of 
the general techniques is provided in [30]. In surgery, the use of 
light projection for 3-D measurements has attracted extensive 
attention [25]. For augmented reality (AR), a structured light 
system was developed to recover the shape of the surgical site 
[22]. Subsequently, methods based on a laser plane sweeping 
over the surgical scene have been developed [2], [26]. All of 
these systems require an additional instrument port, which has 
not been clinically popular.

More recently, the use of projected coded patterns has been 
investigated [20] and methods based on time-of-flight technolo-
gies have been explored. They have been shown to produce 
promising results, albeit at limited resolution and frame rates 
with the current technologies [31].

SOFT-TISSUE TRACKING 
AND MORPHOLOGY ESTIMATION

TISSUE TRACKING
The 2-D/3-D morphology and dynamic motion of soft tissue 
can be recovered by temporally tracking regions of interest in 
the image. This approach is illustrated in Figure 3(a) and (b) 
and has been used to recover 3-D tissue morphology and 
deformation in a variety of anatomical regions as summa-
rized in Table 2. The problem of locating a region of interest 
in one image and finding the corresponding region in anoth-
er is difficult in MIS. This is because MIS images can be low 
in contrast, noisy, and poorly illuminated. The appearance of 
tissue also varies greatly from homogenous, to highly tex-
tured and many regions contain view-dependent specular 
reflections. It is also necessary to deal with occlusion by sur-
gical instruments, image artifacts, and dynamic effects such 
as bleeding and cauterization smoke. The performance of a 

region-tracking algorithm is largely influenced by how dis-
tinguishable the region is from its surroundings. This is 
affected by what regions are detected for tracking, how the 
region is represented in image or feature space, and the 
matching strategy used to locate the corresponding region in 
a new image or video frame.

Region detection is the process of identifying salient regions 
in the image that are distinguished from their surroundings. 
Passive techniques that detect naturally occurring features such 
as vessels, corners, or blobs [32]–[37] are preferred as they do 
not interfere with the surgeon’s view or require user interac-
tion. A comparison of region detectors in MIS is provided in 
[38]. Tissue can appear homogenous, making region detection 
challenging. This can be overcome by manually selecting 
regions [39], [40], using fiducial markers [13], [14], or by mark-
ing the tissue of interest (e.g., with diathermy) [39], [41]. These 
active approaches limit the number of tracked regions.

In general, the region can be represented in image space 
or feature space. In image space, the region is simply repre-
sented by pixels as an image patch or template [33], [39]. The 
main problems with this approach are that the representation 
is not invariant to large image transformation and the image 
information may not be sufficient to distinguish a region from 
its surroundings. Alternatively, descriptors can be used to rep-
resent the region in feature space. Feature descriptors select 
what information from the image will be used (e.g., gray scale, 
color, and gradient) and how this information will be repre-
sented (e.g., energy in the cooccurrence matrix [40], nonuni-
formity of the run-length matrix [40], probability density 
histograms [41], histograms of gradients [34], contours, and 
active appearance models). 

Descriptors can be made invariant to image transformation 
such as scale and rotation through explicit modeling. However, 
ad hoc modeling of nonlinear deformation is not trivial. 
Selecting a feature descriptor is context specific and the perfor-
mance of descriptors can be affected by low-contrast images 
changes in illumination and specular highlights, making the 
selection of a robust descriptor challenging. In [13], [34], and 
[40], machine-learning techniques are used to select and com-
bine discriminant descriptors.

[TABLE 2] SUMMARY OF TISSUE MORPHOLOGY AND 
STRUCTURE ESTIMATION METHODS APPLIED IN MIS.

ORGAN

RECOVERED SCENE GEOMETRY

STATIC DEFORMING
HEART [11], [58], [67] [13], [14], [17], 

[18], [29], [32], 
[33], [35], [36], 
[40], [43], [49], 
[51], [76]

ABDOMEN / LIVER / GALL-
BLADDER / KIDNEY

[37], [59], [64], 
[69]–[71], 74]

[34], [35], [39], [41]

COLON [53], [55], [57] –

BLADDER [60]–[63] –

ESOPHAGUS [54], [56], [72] –

SINUS [73] –
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For tracking purposes, the region representation can be cre-
ated on the first frame and remain constant or updated at each 
frame. Updating enables temporal persistency to be assumed but 
can lead to error propagation.

Matching strategies can be categorized as recursive methods 
or “tracking by detection” [42]. Recursive methods such as 
Lucas Kanade (LK) attempt to minimize the difference between 
the region representation and a region in the new image. LK 
operates in image space and uses the previous location of the 
region to search for a match locally. This minimization 
approach works well on small deformations and has been suc-
cessfully applied to MIS [17], [29], [32], [33], [36], [39], [43]. 
However, recursive approaches using image space can be sensi-
tive to changes in illumination and specular highlights. They 
are not well suited to dealing with occlusion and require frame-
to-frame updates, leading to error propagation. 

In tracking by detection, the region detector is applied to 
each new video frame to extract a set of potential matches. This 
set is searched to find a match by comparing feature descriptors. 
Matching strategies can be one to one (e.g., nearest neighbor), 
one to many (e.g., nearest neighbor ratio) or many to many 
(e.g., random sample consensus (RANSAC) [44]). Detectors and 
descriptors can be complementary such as SIFT [45] and SURF 
[46]. Tracking by detection is well suited to dealing with occlu-
sion as no temporal information about the region’s location is 
required. The main problem with the application of these tech-
niques in MIS is related to the ad hoc assumptions they make 
about what image features to use and the expected image trans-
formations. In addition, this approach is dependent on the 
region detector to correctly locate the region in each new video 
frame and the global uniqueness of the region as represented in 
the feature space. Tracking by detection has been applied in MIS 
[34], and in [35], an approach is proposed which exploits a 
recursive technique (which requires no prior knowledge) to 
learn a feature descriptor online.

TISSUE MORPHOLOGY MODELING
Extracting and modeling the 2-D/3-D motion of dynamic tis-
sue is an important prerequisite of image-guided surgery. The 
3-D position of tissue, shown in Figure 3(c) can be estimated 
with a stereo laparoscope as described earlier or with a monoc-
ular laparoscope based on fiducial markers with known geom-
etry [13]. In practice, tissue deformation can be caused by the 
cardiac and respiratory cycles, tissue tool interaction, or mus-
cular contraction. 

Deformation resulting from cardiac and respiratory cycles 
can be modeled as quasi-periodic or periodic signals [47]. 
Respiration during MIS is usually regulated by a ventilator, cre-
ating an asymmetric periodic signal with an extended exhale 
phase. For example, the effect of respiration on the liver is mod-
eled in [41] by a prototype repetitive controller and using a 
weighted-frequency Fourier linear combiner in [48]. The motion 
of the cardiac surface, however, is more complex as it contains 
deformations caused by both the cardiac and respiratory cycle. 
The deformations can be decoupled [33], [35] into their intrin-

sic components or considered together. A number of approaches 
have been suggested for modeling cardiac motion, which 
include Fourier series [49], vector autoregressive models [49], 
Taken’s theorem [36], and linear parameter variant finite 
impulse response models [50]. Information from the ventilator 
and electrocardiogram (ECG) has also been incorporated to 
increase accuracy [51]. Modeling large-scale, nonperiodic tissue 
deformation caused by tissue-tool interaction or muscular con-
traction is more challenging. It is likely to require the applica-
tion of statistical shape, finite element, and biomechanical 
models such as those used in needle steering and surgical simu-
lators [52].

STRUCTURE AND CAMERA 
MOTION ESTIMATION
The methods described in the previous sections are based on the 
assumption that the laparoscopic camera is static. This is not true 
in practice, particularly with the recent emergence of natural ori-
fice transluminal endoscopic surgery (NOTES) or single port 
access (SPA) techniques. In this section, we will describe two 
approaches for recovering the structure of the MIS environment, 
as well as the camera position: structure from motion and simul-
taneous localization and mapping (SLAM). These competing tech-
niques are compared schematically in Figure 4. Both approaches 
are based on the assumption that the structure of the environment 
is relatively stable. It is worth noting that this is a strong assump-
tion for MIS. Nevertheless, these methods have been applied to 
various parts of the anatomy (Table 2) where tissue motion or 
deformation is minimal. The extension of these techniques to non-
static environments will be discussed.

STRUCTURE FROM MOTION
Structure from motion [4] is a computer vision technique 
developed to recover the structure of a scene and the motion 
of the camera. A wide variety of approaches exist. However, 
the basic framework contains three components as illustrat-
ed in Figure 4: 1) image registration and frame-to-frame 
camera motion estimation; 2) global optimization or bundle 
adjustment where multiple images are registered; and 3) 
scene reconstruction. 

Image registration and frame-to-frame motion estimation 
can be performed in the image space by using direct alignment 
[53]–[56] or in feature space using region matching [57]–[60]. 
Direct alignment uses every pixel in the image and is well suit-
ed to environments with sparse regions of interest. However, it 
requires a large image overlap, suffers from the aperture prob-
lem, and can be affected by specular highlights. Operating in 
feature space enables registration with smaller image overlap 
and nonsequential matching. Camera motion is estimated by 
minimizing the equation [4] defined by the motion model. 

The motion model describes the assumptions made about 
the structure and geometry of the environment. It defines the 
mathematical relationship between pixels in images captured 
from different locations. In MIS, planar models have been used 
on a variety of organs [59], [61]–[64] (see Table 2), cylindrical 
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models for the esophagus and colon [53]–
[56], and full projective models for the 
abdomen, colon [57], heart [58], and blad-
der [60]. The main problem with struc-
ture from motion is error propagation 
caused by the frame-to-frame camera 
motion estimation. Small errors propa-
gate over time and can cause inaccuracies 
in the camera and structure estimations. 
This problem can be addressed using 
global optimization.

Global optimization is the use of batch 
operations or bundle adjustment to regis-
ter multiple images together and find the 
optimal set of transformations that mini-
mizes error and removes drift. Global 
optimization with multiple images can be 
computationally expensive, making it 
inappropriate for online in vivo, in situ 
applications. Nevertheless, it is suited to 
offline applications [56], [59], [61].

Scene reconstruction is the process of 
generating a model of the tissue struc-
ture. Given the estimated positions of the 
camera, scene reconstruction can be per-
formed by matching regions of interest 
between images. The matched regions are 
triangulated to estimate 3-D points rela-
tive to the camera. These points can be 
meshed or interpolated to create a model 
of the tissue structure.

The work described above is based on 
the assumption that the MIS environment 
is static. Nonrigid structure from motion 
has been proposed for tracking faces [65] 
and clothing [66]. These techniques are 
based on the factorization method and 
shape basis representation. They are not 
suitable for real-time applications as the 
deformation is dealt with in an offline, 
global optimization step. Nonrigid struc-
ture from motion has been applied to the 
heart [67]. However, it is used to deal with 
residual motion when constructing a stat-
ic cardiac surface at a preselected point in 
the cardiac cycle and not to generate a 
deforming surface model.

SLAM
SLAM has its origin in autonomous robotic navigation. It is 
designed to solve the problems of consistent incremental envi-
ronment mapping and localization of a robot within the map. 
Previously, these had been treated as separate problems where 
either the map or robot location is assumed to be known. This 
approach was unsuccessful as neither can be known for certain 

due to noise in sensor measurements. The solution is to formu-
late mapping and localization into a single state estimation 
problem within a probabilistic framework. Originally developed 
for laser ranger finders and sonar, SLAM has been reformulated 
for cameras [68]. 

In MIS, SLAM has been applied to the abdomen [69]–[71], 
esophagus [72], and sinus [73] (in conjunction with preopera-
tive data) where deformation and tissue motion is minimal. 
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[FIG4] Illustration of structure and camera motion estimation. (a) Structure from 
motion with frame-to-frame estimation and global optimization. (b) SLAM with 
sequential incremental long-term mapping, uncertainty estimates, motion prediction, 
and state updates.
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Figure 5 shows the results of SLAM when applied to laparo-
scopic surgery, illustrating the 3-D map and camera position. 
The fulcrum effect of the laparoscope is clearly visible. In MIS, 
the goal is to localize the laparoscope camera and build a map 
of the tissue surface. A typical feature-based SLAM system is 
illustrated in Figure 4. The SLAM system alternates between a 
prediction step, where the motion of the camera is blindly pre-
dicted, and an update step, where the map is measured relative 
to the camera. A vision SLAM system consists of a state vector, 
a probabilistic framework, feature initialization, a prediction 
model, and a measurement model.

The state vector contains a map and the position of the lap-
aroscope camera. The map contains the 3-D xyz position of a 
set of features or points in the environment. The camera’s 
position is represented by the xyz position and roll, pitch, yaw 
rotations. In addition, this state vector contains the velocity 
and angular velocity of the camera. Real-time performance has 
been demonstrated [68] on sparse maps containing 100 fea-
tures with full covariance.

The probabilistic framework in SLAM enables uncertainty or 
noise in the system to be modeled. The framework represents 
the joint probability between the position of the camera and the 
features in the map at a given point in time. It therefore corre-
sponds to the current estimate of the state vector and the uncer-
tainty in the state estimation. In MIS, the extended Kalman 
filter (EKF), which assumes Gaussian noise, has been employed 
[69]–[72], [74]. The uncertainty in the state estimate is repre-
sented in a covariance matrix, which describes the variance 
from the estimate. In the wider SLAM community, a variety of 
probabilistic frameworks have been implemented including 
unscented Kalman filters and Rao-Blackwellized particle filters 
(FastSLAM) [75].

Features initialization is dependent on the optical setup. In 
stereoscopic systems [69], [71], [74], features are matched in the 
left and right images and the 3-D position is triangulated relative 
to the camera. In monocular systems, the 3-D position is esti-

mated by matching features temporally and requires the camera 
motion to be estimated. This is estimated using inverse depth 
[70], [72] or structure from motion [73]. SLAM uses a full cova-
riance matrix between all features in the map to enable map 
convergence. For real-time performance, the size of the map is 
restricted and feature initialization should be carefully managed. 

The prediction model or motion model describes how the 
camera is expected to move. This model contains the following 
two elements: 

The deterministic element is where the motion is estimat-1)
ed based on a sensor (e.g., odometry) or an assumption. In 
[69], [70], and [72], a constant velocity constant acceleration 
model is assumed. 

The stochastic element, which is a probability distribution 2)
represented by a Gaussian or collection of particles. It repre-
sents the unknown motion that cannot be easily modeled. 
A constant velocity, constant acceleration motion model 

assumes the camera motion will be smooth. This assumption can 
be violated in both handheld MIS and robotic-assisted MIS, thus 
leading to system failure. The motion of a rigid laparoscope is lim-
ited by the fulcrum effect that may help to constrain the problem. 

In the update step, the predicted state is compared to the 
measured state. The measurement model provides a means of 
measuring the current state of the system. SLAM measures the 
location of features in the map relative to the camera. In stereo 
SLAM, visible features are compared in 3-D by stereo region 
matching and triangulation, while in monocular SLAM visible 
features are projected onto the camera image plane and regions 
are matched using measurements in the 2-D image plane. 

SLAM is a recent success story in mobile robotics that is also 
establishing its role for image-guided surgery, largely due to its 
probabilistic foundations and real-time capabilities. Unlike 
structure from motion, it is naturally suited to returning to pre-
viously visited areas and does not require a batch process to 
converge to an accurate estimation of the environment struc-
ture. Practical future work in the application of SLAM to MIS 

(b)

(a)

(c) (d) (e) (f)

Y Y
Y Y

X X X X

Z Z Z Z

[FIG5] Laparoscopic SLAM as applied to the abdominal MIS. (a) Laparoscopic video with tracked regions (squares) and projected 
uncertainly (circles). Laparoscope position and (b)–(e) 3-D sparse map of tissue with position uncertainties and (f) 3-D surface
mesh of tissue.
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will be focused on creating denser maps covering larger areas, 
identifying more robust long-term features, developing motion 
models better suited to rapid motion, and recovering from fail-
ure. However, the main challenge in the application of SLAM to 
MIS is the theoretical treatment of deformation. 

SLAM has been widely applied to nonstatic civil environments 
where motion is caused by people and cars. Nonstatic motions are 
treated as outliers. Outliers can be identified using approaches 
such as RANSAC [44]. This assumes a global rigidity model and 
identifies outliers as features that do not fit to the model. This 
approach relies on parts of the environment being static that may 
not be the case in MIS. In [77], however, moving objects (cars) 
are identified and incorporated into the probabilistic framework 
of SLAM. This work demonstrates that SLAM can be applied with-
out the full static assumption by explicitly creating motion mod-
els for moving objects. As we have seen in the section “Tissue 
Morphology Modeling,” it is possible to estimate motion models 
representing the morphology of deforming tissue. Future work 
on deforming SLAM will investigate the incorporation of mor-
phological models into the probabilistic framework.

The output from SLAM is generally a sparse set of 3-D points 
representing the structure of the environment. These points can 
be meshed to create a solid model shown in Figure 5(f). Textures 
from the laparoscopic video can be applied to make the model 
visually accurate.

MONOCULAR AND STEREO SYSTEMS
Structure from motion and SLAM can be used with either mon-
ocular or stereo cameras. Monocular systems are commonly 
used in operating theatre. However, the number of stereoscopic 
systems is steadily increasing particularly for robotic-assisted 
MIS. Ideally, the integration of computer vision into the surgical 
theatre will operate with existing monocular laparoscopes, how-
ever, the significant drawback of monocular vision is that 
acquiring depth information requires camera motion or fidu-
cials of a known size. Therefore, the application of monocular 
vision in MIS is more limited than stereo. 

VALIDATION AND VERIFICATION
Validation is a crucial step in the evaluation of the discussed 
methods. Practically, the validation process is challenging due 
to a lack of ground truth for in vivo cases. Experiments are usu-
ally performed on numerically simulated data or on phantom 
models. The ideal metric for measuring error should be 
Euclidian distances in metric 3-D space or in the projected 2-D 
image plane. However, for algorithms where rotations need to 
be evaluated, as with mosaicing, the exact method for measure-
ment is less well defined [59]. Qualitative evaluations using 
physiological signal frequency comparisons have been used in 
the literature [14], [36].

Computer simulations are used to test the numerical stabili-
ty of algorithms under different levels of modeled noise to estab-
lish the baseline performance [41], [58], [60], [69]. However, 
simulations are not capable of modeling all noise sources and 
the complexity of the MIS setup. Therefore, more realistic phan-

tom experiments with known ground truth geometry and 
motion characteristics are used [41], [58], [60], [74], [76]. 

In practice, the ground truth for phantom models can be 
obtained using tomographic scanning and reconstruction tech-
niques or surface scanning using range finders [58], [60], [73], 
[74], [76]. A practical challenge is to ensure the structural integ-
rity of the model during ground truth acquisition. This is par-
ticularly difficult for dynamic models, where the model 
morphology must be consistently repeatable and synchronized 
between modalities [28]. Repeatable dynamic motions can be 
achieved by a combination of mechanical devices and signal 
generators [19], [28], [41]. High contrast fiducial markers are 
typically embedded in the phantom enabling registration 
between the experimental and ground truth coordinate systems. 
The quality of the resulting alignment is of crucial importance 
to the values obtained during validation and controlling the 
error in the ground truth to measurement registration is an 
important consideration.

Ground truth for the camera or surgical tools can be 
obtained using optical trackers or electromagnetic tracking 
devices [73], [74]. They require hand-eye calibration to relate 
the tracking device and the camera coordinate systems. In addi-
tion, controlling the error propagation between the optical, 
camera, and phantom model coordinate systems can often be a 
practical challenge that needs to be handled with care.

For better visual fidelity, a cadaver can be used in experi-
ments, however, the ground truth for this is difficult to obtain 
and maintain due to gradual changes in tissue property [19], 
[74], [76]. The same problems arise during in vivo and wet lab 
experiments with animal studies. In these cases, structural and 
morphological ground truth is not available and results are usu-
ally presented to qualitatively demonstrate practical feasibility 
rather than metric measurements. Some experimental analysis 
may be performed by obtaining user feedback [34], [35, [39] and 
by comparisons with other physiological sensing equipment 
such as ECG signals [13], [18], [32], [35], [67].

Currently, there is no quality data repository providing a 
series of data sets for algorithm benchmarking, evaluation and 
comparison. This makes it particularly difficult for research 
centers without established MIS infrastructure to work in this 
area. To address this problem, we have introduced a database 
containing video data, calibration information, and ground 
truth data http://vip.doc.ic.ac.uk/vision. 

TECHNICAL CHALLENGES 
AND CLINICAL APPLICATIONS
The future of navigation and control in robotic-assisted MIS is 
in the intelligent use of preoperative and intraoperative 
patient specific data. For intraoperative guidance and applying 
image guided, dynamic active constraints to avoid critical ana-
tomical structures, it is necessary to develop fast and accurate 
techniques for 3-D surface reconstruction and motion estima-
tion in situ. However, the development of computer vision 
techniques for these dynamic and nonrigid surgical scenes 
remains challenging.
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The robustness of computer vision in MIS is affected by a 
number of factors including the paucity of features, specular 
highlights, rapid camera motion, small baseline, tissue deforma-
tion, surgical smoke, and occlusion. One of the major challeng-
es is the theoretical treatment of tissue deformation, in 
particular, when combined with camera motion. New methods 
are required to adapt to the changing environment and to 
understand the dynamics of the structural morphology to antic-
ipate risks and apply motion prediction.

Tissue motion caused by the respiratory and cardiac cycles 
can be modeled using periodic and quasi-periodic models. This 
is particularly important for highly dynamic procedures around 
the beating heart where motions arising from the cardiac and 
respiratory cycles affect the stability of the operating field. In 
these cases, an important control issue to consider is motion 
compensation, where the robotic tools are synchronized with 
the physiological motion to cancel out its rhythmic compo-
nents. In cardiothoracic surgery, despite the use of mechanical 
stabilizers the anastomosis site can be unstable and motion 
compensation is required facilitate less invasive procedures such 
as TECAB [36], [50]. For the effective deployment of motion 
compensation, the operating frequency of the robotic device 
control must be determined to avoid redundancy and signal 
aliasing. Some preliminary studies indicate that this may be in 
the region of 100 Hz, which requires fast intraoperative process-
ing. In fact the frequency of operation required by the comput-
er-integrated surgical system to update information or robotic 
control needs to be identified and accuracy requirements clearly 
defined for different applications [78].

Nonperiodic tissue deformation is likely to require the fusion 
of optical information with prior biomechanical or statistical 
anatomical models and patient specific information. The prob-
lem is complicated further by tissue-tool interaction and topo-
logical changes of the tissue due to dissection. There is a critical 
need for a synergy between the robotic instruments’ interactions 
with tissue and the surgeon. For systems directed at orthopaedic 
surgery, for example, this can be achieved by imposing active 
constraints on the tool’s motion by using the preoperatively 
acquired, segmented, and modeled patient data [79]. 

For soft-tissue procedures, the problem is significantly more 
complex, largely due to the deformation and dynamics of the 
anatomy during surgery. To impose control constraints on the 
robotic instruments and to establish “no go” zones for protect-
ing delicate parts of the anatomy, patient specific data must be 
updated in vivo to reflect the current location and changes in 
anatomical structure. This requires 3-D surface recovery in real 
time and the subsequent augmentation of geometric and bio-
mechanical models that are physically accurate. By incorporat-
ing biomechanical tissue properties, it may be possible, to 
accurately delineate critical anatomical structures and deliver 
tactile sensing to reflect the dynamic active constraints 
imposed. However, a major challenge of physical-based model-
ing such as finite element modeling is how to obtain the model 
parameters using information from medical images to conform 
to the appearance and behavior of real tissue. By considering 

the tissue deformation in real time, the model parameters may 
be updated to improve the most up-to-date anatomical repre-
sentation. The modeled tissue can then be used for intraopera-
tive simulations, establishing dynamic active constraints, and 
delivering tactile feedback through the surgical console.

Information regarding the computer-integrated system must 
be effectively presented to the surgeon with considerations for 
error and uncertainty in the data visualization. In image-guided 
surgery, AR is the most common form of data fusion. The clini-
cal benefit of image guidance has been well recognized in neuro 
and orthopaedic surgeries where the operating field is stable 
and undergoes only limited deformation [80]. 

The main problem with implementing AR for surgical navi-
gation in robotically assisted MIS is in the accurate alignment 
of the computer-generated images with the real world. Accurate 
alignment of the real and virtual objects depends on the accu-
rate tracking of the position and orientation of the viewing 
source with respect to the anatomy of interest. The complexity 
of tissue deformation during surgery imposes significant chal-
lenges to the AR display and it is a major factor that limits the 
more widespread use of AR for surgical guidance in soft-tissue 
procedures. In particular, deformation inhibits two important 
aspects of navigation: 1) recovery of the motion and the location 
of the imaging device with respect to the tissue and 2) the com-
putation of the relationship between the preoperative model of 
the anatomy and its intraoperative status. The incorporation of 
3-D shape recovery from stereo video sequences provides the 
possibility of AR being used for robotic-assisted laparoscopic 
surgeries. An important area of work is how to extend the cur-
rent state of the art in localization techniques to handle deform-
able environments.

Human computer/robot interaction is another important 
part of future MIS platforms. Developing interfaces for the sur-
gical theatre is challenging as the surgeons use their hands to 
perform surgery, making traditional interfaces such as key-
boards and mice inappropriate. Foot peddles offer an additional 
source of input, however, they are limited in their range of input 
and in [81], it has been shown that voice control can be 
employed to position the endoscope. Eye-gaze tracking and 
brain-machine interfaces are elegant solution to the interface 
problem and have the potential to provide more information 
than traditional techniques, such as the focus and attention of 
the surgeon. This information have been exploited for visual 
servoing in [82] and for motion compensation in [83]. 
Developing intuitive interfaces for surgery can be challenging as 
surgical workflow can vary greatly between surgeons. It is envis-
aged that for complex image-guided procedures, a new profes-
sion of surgical analysts may be created in the future. 

SUMMARY
Advanced surgical techniques such as image-guided navigation 
with intraoperative motion stabilization and dynamic active con-
straints have the potential to change the current functional capa-
bilities of MIS. For these techniques to be successful in complex 
MIS procedures, accurate recovery of 3-D tissue structure and 
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morphology, as well as camera motion estimation are important 
prerequisites. In this tutorial, we have outlined the current 
approaches to estimating this information using laparoscopic 
cameras. We have reviewed optical methods from camera models 
to tissue morphology recovery techniques for robotic guidance. 
This is an active research area that has witnessed a significant 
amount of research output in recent years. It is anticipated that 
with its maturity, the information derived will play a pivotal role 
in the future of image-guided or robotic-assisted MIS.
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[Drawing conclusions from medical images]

S
tatistical meth-
ods of automat-
e d  d e c i s i o n 
m a k i n g  a n d 
modeling have 

been invented (and rein-
vented) in numerous fields 
for more than a century. 
Important problems in 
this arena include pattern 
classification, regression, 
control, system identifica-
tion, and prediction. In 
recent years, these ideas have come to be recognized as exam-
ples of a unified concept known as machine learning, which is 
concerned with 1) the development of algorithms that quantify 
relationships within existing data and 2) the use of these iden-
tified patterns to make predictions based on new data. Optical 
character recognition, in which printed characters are identi-
fied automatically based on previous examples, is a classic 
engineering example of machine learning. But this article will 
discuss very different ways of using machine learning that may 
be less familiar, and we will demonstrate through examples the 
role of these concepts in medical imaging. 

Machine learning has seen an explosion of interest in mod-
ern computing settings such as business intelligence, detec-
tion of e-mail spam, and fraud and credit scoring. The medical 
imaging field has been slower to adopt modern machine-
learning techniques to the degree seen in other fields. 

However, as computer 
power has grown, so has 
interest in employing 
advanced algorithms to 
facilitate our use of medi-
cal images and to enhance 
the information we can 
gain from them. 

Although the term 
machine learning is rela-
tively recent, the ideas of 
machine learning have 
been applied to medical 

imaging for decades, perhaps most notably in the areas of 
computer-aided diagnosis (CAD) and functional brain map-
ping. We will not attempt in this brief article to survey the rich 
literature of this field. Instead our goals will be 1) to acquaint 
the reader with some modern techniques that are now staples 
of the machine-learning field and 2) to illustrate how these 
techniques can be employed in various ways in medical imag-
ing using the following examples from our own research:

CAD■

content-based image retrieval (CBIR)■

automated assessment of image quality■

brain mapping.■

INTRODUCTION TO MACHINE LEARNING
In this brief tutorial, we will attempt to introduce a few 
basic techniques that are widely applicable and then show 
how these can be used in various medical imaging settings 
using examples from our past work in this field. For further 
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information, interested readers should consult well-known 
introductions to machine learning, such as the excellent 
treatments in [1] and [2].

SUPERVISED LEARNING
In machine learning, one often seeks to predict an output vari-
able y  based on a vector x  of input variables. To accomplish 
this, it is assumed that the input and output approximately obey 
a functional relationship y5 f 1x 2 , called the predictive model, 
as shown in Figure 1. In supervised learning, the predictive 
model is discovered with the benefit of training data consisting 
of examples for which both x  and y  are known. We will denote 
these available pairs of examples as 1x i, yi 2 , i5 1, c, N , and 
we will assume that x is composed of n  variables (called fea-
tures), so that x i [ Rn. In general, the output of the predic-
tive model can be a vector (e.g., in multiclass classifiers), but 
for simplicity we will confine our attention to the case of sca-
lar outputs.

Historically, a somewhat artificial distinction has some-
times been made between two learning problems: classifica-
tion and regression. Classification refers to decision among a 

typically small and discrete set of choices (such as identifying 
a tumor as malignant or benign), whereas regression refers to 
estimation of a possibly continuous-valued output variable 
(such as a diagnostic assessment of disease severity y 2 . If the 
choices in a classification problem are indicated by discrete 
numerical values (e.g., y511 for the class malignant and 
y521 for benign), then it is easy to see that classification 
and regression are represented equivalently by the model 
in Figure 1.

THE SUPPORT VECTOR MACHINE CLASSIFIER: 
A MAXIMUM-MARGIN APPROACH 
Let us consider the simple pattern classification problem depict-
ed in Figure 2, in which the goal is to segregate vectors 
x5 1x1, x2 2T into two classes by using a decision boundary T.
Let us employ a linear model f 1x 2 5wTx1 b, so that T  is a line 
in this two-dimensional example. Traditionally, the model’s 
parameters (w and b in this case) have been determined using 
classical criteria such as least squares or maximum likelihood. 
Figure 2 illustrates how such an approach (in this case, a Fisher 
discriminant) can easily fail, particularly when the method’s dis-
tributional assumptions are violated. In Figure 2(a), data point 
D adversely influences the Fisher discriminant boundary, caus-
ing misclassification of point B even though point D lies very 
far from Class 1, and perhaps should not be granted this degree 
of influence. 

The support vector machine (SVM) [2], discovered by Vapnik, 
resolves this shortcoming by defining the discriminant bound-
ary only in terms of those training examples that lie dangerously 
close to the class to which they do not belong. This idea is 
understood most easily in a situation such as the one shown in 
Figure 2, in which the two classes are strictly separable by a lin-
ear decision boundary, as explored by Wernick in [3]. In this 
case, a separating line that maximizes the margin between the 
two classes can always be found as follows: 

Draw the convex hull of each class of data points (imagine 1)
stretching a rubber band around each group of points; call 
these regions S1 and S2). 

Find the points 2) C  and E  at which regions S1 and S2 have 
their closest approach. 

Draw the perpendicular bisector of the line segment con-3)
necting points C  and E  to obtain the decision boundary T.

Step 2 is accomplished by solving a quadratic programming 
(constrained optimization) problem using standard ap-
proaches [3]. In linear classifiers, vector w  is called the 
discriminant vector.

In the terminology of the SVM, points A, B, and C  in 
Figure 2 are called support vectors, a term derived from an 
analogy to mechanics. If points A, B, and C  in Figure 2 were 
physical supports, they would be sufficient to provide mechan-
ical stability to slab S sandwiched between them.

It is evident that the support vectors are the only examples 
from the training data that explicitly define the model. 
Specifically, for a particular test example x, one can write the 
model in terms of the support vectors as follows:

x f (·) y

Input OutputPredictive Model

[FIG1] In supervised learning the predictive model represents 
the assumed relationship between input variables in x and 
output variabley.
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[FIG2] Fisher linear discriminant (LD) and the SVM. In this 
example, (a) the Fisher LD fails to separate two classes 
because training example D adversely influences decision 
boundary T. (b) The SVM defines the decision boundary 
using only points A, B, and C, called support vectors, and is 
not influenced at all by point D.
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f 1x 2 5 a i[Is

ai yi x i
T x1 b, (1)

in which the summation includes only the training examples x i

that are support vectors, and ai are coefficients determined as 
Lagrange multipliers in the optimization procedure. 

The benefits of the SVM approach are that the classifier con-
centrates automatically on examples that are difficult to classify 
(points A, B, and C); and the calculation in (1) scales with the 
number of support vectors rather than the dimension of the space 
(which in some problems is very large). In addition, SVM can be 
shown to balance training error and model complexity, thereby 
avoiding overfitting, a pitfall in which the model is too finely 
tuned to the training examples and fails to perform well on new 
data. This approach is called structural risk minimization [4].

The formulation described thus far does not allow for the 
possibility that the two classes cannot be entirely separated by 
a linear boundary. However, this situation is readily addressed 
by introducing slack variables into the quadratic optimization 
problem, thus allowing a minimal number of the training data 
to be misclassified. In addition, SVM can be easily adapted to 
accomplish regression instead of classification by using a so-
called e-insensitive cost function [2]. 

NONLINEAR MODELS: THE KERNEL TRICK
An important breakthrough in machine learning has been the 
recognition of the so-called kernel trick [2], which provides a 
simple and broadly applicable means to obtain a nonlinear 
model from any linear model based on inner products. Even 
classical techniques, such as the Fisher discriminant or princi-
pal component analysis, can be turned easily into flexible non-
linear techniques via the kernel trick.

To understand the kernel trick, consider the following 
hypothetical series of steps as applied to turn the linear SVM 
into a nonlinear technique. Suppose we were to first apply a 
nonlinear transformation F to each input vector x i from the 
training set and then train a linear classifier to distinguish 
these classes of transformed vectors F 1x i 2 . Separability will be 
enhanced if the dimension of the transform space is higher 
than that of the original space, and indeed the transforma-
tion’s dimension need not be finite. 

At first glance, transforming each input vector into a space 
of high dimension might appear impractical. However, the 
kernel trick recognizes that the desired result can be obtained 
without actually performing the transformation. This can be 
seen by applying the transformation F and then applying the 
SVM model in (1). After transformation, (1) becomes

f 1x 2 5 a i[Is

ai yiF 1x i 2TF 1x 2 1 b. (2)

Note that the transformation F appears in (2) only in the 
form of an inner product K 1x i, x 2 ! F 1x i 2TF 1x 2 , so that (2) 
can be rewritten as 

f 1x 2 5 a i[Is

ai yi K 1xi, x 2 1 b. (3)

Therefore, we can see that it is never actually necessary to 
compute F (or even to define it explicitly). Instead it is sufficient 
simply to define the kernel function K 1 # , # 2 , and it can be 
shown that any symmetric positive semidefinite function will 
suffice. Commonly used kernel functions in machine learning 
include radial basis functions (Gaussians) and polynomials. 
Intuitively, the effect of the kernel is to measure the “similarity” 
between a test vector x  and each of the support vectors x i; these 
similarities are then used in to obtain the output result. Vectors 
belonging to one of the classes are presumably most “similar” to 
the support vectors belonging to that class, hence these similari-
ty values convey the needed information. The key point to 
remember is that these similarity comparisons are made only in 
relation to the support vectors, which are difficult examples that 
lie near the discriminant boundary. We will see visual examples 
of these support vectors later in the setting of mammography.

RELEVANCE VECTOR MACHINES: BAYESIAN 
LEARNING AND SPARSITY CONSTRAINTS
An important successor of SVM is the so-called relevance vector 
machine (RVM), developed by Tipping [5]. We have found RVM 
to perform extremely well in several medical imaging applica-
tions, usually with much lower computational cost than alter-
native methods including SVM. The RVM emphasizes sparsity 
(i.e., reduced model complexity), and thus is closely related to 
ideas of compressed sensing [6]. Like SVM, RVM uses a subset of 
the training data called relevance vectors, but usually there are 
far fewer relevance vectors than support vectors.

Like SVM, RVM starts with a kernel model

f 1x 2 5 a
N

i51
wi K 1x, xi 2 , (4)

however, whereas SVM is based on the maximum-margin prin-
ciple, RVM instead takes a Bayesian approach. RVM assumes a 
Gaussian prior on the kernel weights wi, which are assumed to 
have zero mean and variance ai

21. RVM further assumes a 
gamma hyperprior on ai

21. The net effect of these modeling 
choices is that the overall prior on the kernel weights wi is a 
multivariate t-distribution. Because this distribution is tightly 
concentrated about the axes of the wi space, the prior encourag-
es most values of wi to be nearly zero. Thus, in the end, the 
summation in involves only a few nonzero terms, and the asso-
ciated training examples are called relevance vectors. By this 
mechanism, overfitting is generally avoided, and computation 
times for RVM are relatively low. Surprisingly, in spite of its 
advantages, RVM has been used relatively infrequently in medi-
cal imaging, particularly in comparison with the better-known 
SVM approach. 

While RVM and SVM both base their decisions entirely on a 
subset of the training data (the relevance vectors in RVM; the 
support vectors in SVM), these subsets are usually quite differ-
ent. Support vectors are always examples lying near the deci-
sion boundary, while relevance vectors are usually spread 
 throughout the distribution. We will see this difference later in 
the context of mammography. 
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Unfortunately, RVM does not 
have a simple geometrical 
interpretation as SVM does, 
therefore we will not show a 
graphical example in this arti-
cle; instead we refer the reader 
to [5], which contains several 
nice illustrations.

STATISTICAL RESAMPLING FOR 
ROBUSTNESS AND EVALUATION
Statistical resampling [7] refers to a family of techniques that are 
used to evaluate performance and improve robustness of machine 
learning models and to estimate statistical significance levels. 
Although resampling receives less attention than predictive mod-
els, it is at least as important. 

Machine learning differs from classical decision and esti-
mation theory principally in its emphasis on problems where 
one’s only knowledge of the data’s underlying distributions 
comes from the data themselves. In this setting, statistical sig-
nificance testing cannot be approached in the traditional way 
because the null distribution is unknown. Fortunately, an 
empirical estimate of the null distribution can be readily 
obtained by permutation resampling.

To understand permutation resampling, consider a situation 
in which there are two sets of data, v1 and v2, and we wish to test 
some hypothesis, such as that their means are identical. Since we 
do not know in truth whether v1 and v2 obey the same distribu-
tion (or even the form of their distributions), we cannot directly 
assess significance. However, we can create an empirical null dis-
tribution by permuting the labels on the data, i.e., deliberately 
creating two data sets in which the data from v1 and v2 are 
mixed. Note that it is often important that just the labels and not 
the data themselves be permuted (e.g., in time series problems). 
By permuting the data in every possible way (or at least in some 
reasonably large number of random ways), we can obtain example 
data in which we know that the two groups obey identical distri-
butions, thus characterizing the null hypothesis. 

Another central role played by resampling is in solving the 
following problem of model validation: If we train our model on 
all our available data, then there are no data left for testing the 
model or optimizing its parameters. The predominant resam-
pling methods used in this regard, which both require indepen-
dent, identically distributed (i.i.d.) resampling objects, are cross 
validation and bootstrap methods. In k-fold cross validation, 
the data set is divided randomly into k groups; 1k2 1 2  of these 
groups are used to train the model, and one is reserved for test-
ing. This process is performed k times (once for each held out 
group), then the results are combined, often by averaging. In 
the basic bootstrap, the data are instead trained on a set of N
data examples obtained by sampling randomly with replacement 
from the entire data set of N. By chance, some examples will 
not be selected into the training set, and these are reserved for 
testing. As in cross validation, the process is repeated and the 
results combined by averaging. 

The basic bootstrap is 
known to reduce the variance 
of estimated prediction accu-
racy at the expense of down-
ward bias (i .e. ,  the basic 
bootstrap provides pessimis-
tic performance estimates). 
This is remedied by the .632 
bootstrap, which utilizes a 

bias correction term, and the more modern .6321 bootstrap 
[8], which additionally attempts to account for bias due to 
overfitting. In problems where an empirical null distribu-
tion is obtained using permutations, the empirical distribu-
tion of the alternative hypothesis can often be obtained 
using the bootstrap.

Statistical resampling is widely used not only to test predic-
tive models, but also to improve their performance. Examples of 
this are bootstrap aggregation (bagging) techniques and the 
nonparametric, prediction, activation, influence, reproducibility, 
resampling (NPAIRS) framework in neuroimaging [9], which is 
explained later in this article.

CAD FOR MAMMOGRAPHY
CAD has been an active research area for decades, so we will not 
attempt to provide a comprehensive survey of the literature. 
Interested readers should consult basic reviews of CAD for 
mammography, such as [10] and [11]. 

Perhaps CAD’s greatest success is in breast imaging. 
Studies have shown that having two radiologists read the same 
mammogram can lead to significantly higher sensitivity in 
cancer screening, but at the expense of increased workload and 
cost. CAD software can serve as a surrogate “second reader,” 
with the aim of improving radiologists’ diagnostic accuracy at 
lower cost. 

CAD encompasses computer-aided detection (CADe), in 
which the computer alerts the radiologist to potential lesions; 
and computer-aided diagnosis (CADx), in which the computer 
predicts the likelihood that a lesion is malignant.

CAD schemes typically consist of the following key steps: 1) 
apply automated image analysis to extract a vector of quantita-
tive features to characterize the relevant image content and 2) 
apply a pattern classifier to determine the category to which the 
extracted feature vector may belong. 

Automatically extracted image features can include image 
contrast, and features based on geometry, morphology, and tex-
ture. In addition, there may be other forms of available informa-
tion about the patient. Machine-learning methods that have 
been employed range from linear discriminant (LD) analysis, 
fuzzy logic techniques, neural networks, and committee 
machines, to the more recent kernel-based methods (e.g., SVM 
and RVM) explained earlier in this article. 

In the following, we describe two examples of machine learn-
ing for CAD in digital mammography drawn from our own 
research: detection (CADe) and classification (CADx) of clus-
tered microcalicifications.

MACHINE LEARNING HAS SEEN AN 
EXPLOSION OF INTEREST IN MODERN 

COMPUTING SETTINGS SUCH AS 
BUSINESS INTELLIGENCE, DETECTION 

OF E-MAIL SPAM AND FRAUD, 
AND CREDIT SCORING.
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CADe: MICROCALCIFICATION DETECTION
Microcalcifications (MCs) are tiny deposits of calcium that 
appear as bright spots in mammograms (see Figure 3). 
Clustered MCs can be an important indicator of breast can-
cer, appearing in 30–50% of cases. Individual MCs are some-
times difficult to detect due to their variation in shape, 
orientation, brightness and size (typically, 0.05–1 mm), and 
because of the confounding texture of surrounding breast tis-
sue. Microcalcification  detection has been an intensive target 
of investigation (e.g., [12]). Modern machine-learning 
approaches have proven very effective in this application, as 
we explain next.

SVM Detector
In [13], we trained an SVM to decide at each location within a 
mammogram whether an MC was present (“MC present” 
class) or absent (“MC absent” class) based on a small region 
of interest (ROI) surrounding that point. The SVM was 
trained using “MC present” ROIs identified by expert radiolo-
gists (see Figure 4). 

The MCs typically occupy only a small fraction of a mam-
mogram, so there are more ROIs with “MC absent” than 
with “MC present.” To take advantage of this, we developed 
a successive enhancement learning (SEL) procedure that 
improves the predictive power of the SVM classifier. In SEL, 
SVM training is adjusted iteratively by selecting the most 
representative “MC absent” examples from all the available 
training images while keeping the total number of training 
examples small.

Based on a set of test mammograms, we demonstrated the 
SEL-SVM method to achieve the best performance among sev-
eral leading methods in the literature as measured by the free-
response receiver operating characteristic (FROC) curve, a plot 
of detection probability versus the average number of false posi-
tives (FPs) per image (Figure 5). Figure 3 shows a portion of an 
example image and the corresponding SVM output. 

RVM Detector 
Computation time can be a critical issue in mammography, 
where the image can contain as many as 3,000 3 5,000 pixels 
that must be evaluated. While the SVM achieves outstanding 
detection performance, it can be very time consuming because 
the number of support vectors can be large. To address this 
issue, in [14] we developed an approach based on the RVM 
(explained earlier), which yields a very sparse decision func-
tion, leading to significant computational savings, while yield-
ing similar detection performance to the SVM. 

To further accelerate the algorithm, we explored a two-
stage classification approach in which we used a computation-
ally inexpensive linear RVM classifier as an initial triage step 
to quickly eliminate non-MC pixels, then a nonlinear RVM 
classifier to detect MCs among the remaining pixels. Our re-
sults demonstrated that the RVM approach achieved nearly 
identical detection accuracy to the SVM at 35 times less com-
putational cost.

SVM Versus RVM 
As explained earlier, SVM and RVM are both kernel methods, and 
both base the decision on only a subset of the training data—the 
support vectors in SVM and relevance vectors in RVM—that 
characterize the respective classes. However, SVM and RVM tend 

Mammogram
Region

SVM Output Detected
Lesion Positions

(a) (b) (c)

[FIG3] (a) Example mammogram containing microcalcifications. 
(b) Output y of SVM detector. (c) Detected MC positions 
obtained by thresholding y.

Support Vectors

(a)

(b)

Relevance Vectors

MC Present MC Absent

MC Present MC Absent

[FIG4] (a) Comparison of support vectors from SVM and 
(b) relevance vectors from RVM for detection of MCs. SVM 
automatically chooses the support vectors to be examples lying 
near the decision boundary (hence the “MC absent” and “MC 
present” support vectors look very similar), while the relevance 
vectors chosen by RVM tend to be more prototypical of the two 
classes (hence the two groups of relevance vectors look very 
different).
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to select very different vectors 
to represent the classes. SVM 
chooses support vectors that lie 
very close to the decision 
 boundary, while RVM tends to 
choose relevance vectors that 
are more prototypical of the two classes. Examples of support 
vectors and relevance vectors are shown in Figure 4. Note that 
the “MC present” and “MC absent” support vectors are very diffi-
cult to distinguish, as they all lie near the decision boundary, 
while the “MC present” and “MC absent” relevance vectors are 
clear examples of lesion and background regions, respectively. 

CADx: DIAGNOSIS OF 
CLUSTERED MICROCALCIFICATIONS
A great deal of research has been directed toward computerized 
CADx methods designed to assist radiologists in the difficult 
decision of differentiating benign from malignant MCs. In [15], 
a CADx scheme was demonstrated to classify clustered MCs even 
more accurately than radiologists. This method used a feedfor-
ward neural network (FFNN), which was trained using metrics 
extracted automatically from the clustered MC images. 

Motivated by recent developments in machine learning, we 
sought in [16] to determine whether state-of-the-art machine-
learning methods [SVM, kernel Fisher discriminant (KFD), 
RVM, and committee machines (including ensemble averaging 
and Adaboost, a well-known boosting method)] would further 
improve classification of MC clusters as malignant or benign, 
as compared with prior methods such as FFNN. We used the 
features defined in [15] that are based on both the shape and 
size of individual MCs as well as their overall distribution as a 
cluster, that are known to correlate qualitatively to features 
used by radiologists. 

The evaluation study dem-
onstrated that the kernel meth-
ods (SVM, KFD, and RVM) are 
similar in performance to one 
another (in terms of the area 
under the receiver-operating 

characteristic (ROC) curve), but all demonstrated statistically 
significant improvement over FFNN or AdaBoost. 

CBIR FOR CADx
Though promising, CADx has met with resistance to adoption in 
clinical practice, in part because radiologists are trained to 
interpret visual data and rarely deal with quantitative mammo-
graphic information, such as the likelihood of malignancy. 
Thus, when presented with a numerical value, but without addi-
tional supporting evidence, it may be difficult for a radiologist 
optimally to incorporate this number into the diagnostic deci-
sion. As such, traditional CADx classifiers are often criticized for 
being a “black box” approach. 

To avoid this pitfall, an alternative approach we have advo-
cated is to employ CBIR [17], [18], in which an image search 
engine is used to inform the radiologist’s diagnosis in difficult 
cases by presenting relevant information from past cases. The 
retrieved example lesions allow the radiologist to explicitly com-
pare known cases to the unknown case. A key advantage of this 
approach is that it provides case-based evidence to support case-
based reasoning by the radiologist, rather than acting as a sup-
plemental decision maker. 

For a retrieval system to be useful as a diagnostic aid, the 
retrieved images must be truly relevant to the query image 
as perceived by the radiologist, who otherwise may simply 
dismiss them. In 2000 [17], we proposed a supervised learn-
ing approach for modeling the radiologists’ notion of image 
similarity for use in CBIR. Our rationale is that mathemati-
cal distance metrics designed for general-purpose image 
retrieval may not adequately characterize clinical notions of 
image relevance, which are complex assessments made by 
expert observers.

In our approach, the perceptual similarity between two 
lesion images is modeled by a nonlinear regression model 
applied to the image features. The model is determined by 
using supervised learning from examples collected either in 
human observer studies or from online user feedback (acquired 
during use of the system). Specifically, we first characterize a 
lesion by vector u containing its key relevant features. Next, 
feature vector u is compared to the corresponding feature vec-
tor v of a database entry by way of predictive model f 1u, v 2  to 
produce a similarity coefficient (SC). The images with the 
highest SC values are retrieved from the database and dis-
played for the user. In our studies, we have modeled f 1u, v 2
using a nonlinear regression SVM and a general regression 
neural network (GRNN). Our learning metric has proven to be 
much more effective than alternative measures [17], [18].

To illustrate perceptual similarity, Figure 6 is a plot created 
using a multidimensional scaling (MDS) algorithm showing 30 

ALTHOUGH RESAMPLING RECEIVES 
LESS ATTENTION THAN PREDICTIVE 

MODELS, IT IS AT LEAST AS IMPORTANT.
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[FIG5] Detection performance of various methods of detecting 
MCs in mammograms. The best performance was obtained by a 
successive learning SVM classifier, which achieves around 94% 
detection rate (TP fraction) at a cost of one FP cluster per image, 
where a classical technique (DoG) achieves a detection rate of 
only about 68%. 
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microcalcification clusters. 
MDS is a family of techniques 
that aim to map high-dimen-
sional data into a lower-dimen-
sional representation in such 
as a way as to preserve relative 
distances (i.e., if two points are 
close to one another in the 
high-dimensional space, then 
MDS attempts to place them 
near one another in the low-dimensional space). 

In Figure 6, each microcalcification cluster is represent-
ed by a marker (square or circle) in the scatter plot. MDS 
attempts to place the points so that visually similar micro-
calcification clusters (as judged by human observers) are 
placed close to one another in the scatter plot. Examples of 
the microcalcfication clusters corresponding to these data 
points are shown as collections of plus (1) signs. Visual 
inspection of these examples suggests that the vertical axis 
of the plot is associated roughly with density of the micro-
calcifications, while the horizontal axis reflects the shape of 
the cluster. Note that there is a reasonable, but not perfect, 
separation between malignant and benign lesion classes in 
this space.

Recently, we proposed to use CBIR to boost the perfor-
mance of a traditional CADx classifier [18]. Specifically, data-
base images similar to the image being evaluated by the 
radiologist are used to improve the SVM classifier, thus 
improving its accuracy in analyzing the present case. We are 
currently investigating the impact of CBIR on the diagnostic 
performance of radiologists. 

AUTOMATED ASSESSMENT OF IMAGE QUALITY 
BY PREDICTION OF DIAGNOSTIC PERFORMANCE
Diagnostic imaging can be thought of as a pipeline consisting of 
an imaging device, an image processor (e.g., image reconstruc-
tion algorithm and display), and a human observer (e.g., a radi-
ologist). Principled methods are needed to assess the impact of 
design choices in the image acquisition and processing stages 
on the final interpretation stage.

It has been common traditionally to evaluate imaging 
devices and image reconstruction software using only basic 
fidelity metrics, such as signal-to-noise ratio (SNR), mean-
square error, and bias and variance. However, such metrics 
have limitations when comparing images affected by statisti-
cally different types of blur, noise, and artifacts [19]. This was 
recognized in the 1970s in the context of radiographic imag-
ing by Lusted [20], who pointed out that the image can repro-
duce the shape and texture of tissues faithfully from a physical 
standpoint, while failing to contain useful diagnostic informa-
tion. In a highly influential article in Science [20], Lusted pos-
tulated that, to measure the worth of a diagnostic imaging 
test, one must assess the observer’s performance when using 
the imaging test. In other words, if an image is to be used for 
lesion detection, then image quality should ideally be judged 

by the ability of an observer to 
detect  les ions . Such an 
approach has become known 
as task-based assessment of 
image quality.

Lusted further argued that 
the ROC curve from classical 
detection theory is an ideal 
means to characterize diagnos-
tic performance, and thus 

image quality. This approach has led to the wide use of ROC 
analysis in medical imaging, as implemented, for example, in 
the ROCKIT software distributed by Metz et al. [21].

Figure 7 shows an example of how the human observer’s 
performance is affected by the type of images that are present-
ed. In this case, the observer is shown a perfusion image of the 
myocardium (heart wall), obtained using single-photon emis-
sion computed tomography (SPECT). The observer is asked to 
judge whether there is a dark region indicating deficient per-
fusion, based on images reconstructed in different ways from 
the very same data set. Figure 7 shows 12 different recon-
structions obtained by using either one or five iterations of 
the ordered-subset expectation-maximization algorithm 
(OS-EM), and with Gaussian filters having varying full width 
at half-maximum (FWHM). 

Along the top and bottom of Figure 7 are values of an 
observer’s stated confidence in the presence of a lesion at a loca-
tion indicated by arrows (on a scale of one to six, with six indi-
cating high confidence). Note that the observer’s  confidence 
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[FIG6] Statistical tool for visualizing relationships among 
abnormalities seen in various mammograms, in which distances 
reflect the relative similarities of abnormalities, as judged by 
human experts. MC clusters are represented in this two-
dimensional diagram by using multidimensional scaling, a 
statistical technique that seeks to represent high-dimensional 
data in a lower-dimensional plot that can be readily visualized, 
while aiming to maintain the relative distances (similarities) 
among the data points. Each group of red plus signs (+) depicts 
the actual MC cluster associated with a given point in the scatter 
plot. This shows that the vertical axis of the plot is roughly 
associated with the density of each cluster, while the horizontal 
axis is related to its shape. 

FOR A RETRIEVAL SYSTEM 
TO BE USEFUL AS A DIAGNOSTIC AID, 

THE RETRIEVED IMAGES MUST BE TRULY 
RELEVANT TO THE QUERY IMAGE 

AS PERCEIVED BY THE RADIOLOGIST, 
WHO OTHERWISE MAY SIMPLY 

DISMISS THEM.
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that a lesion is present increases, then decreases, as the images 
are made smoother. Selection of the optimal smoothing level is 
an example of a goal in which a quantitative image-quality 
metric is needed.

MACHINE-LEARNING MODEL OF HUMAN OBSERVERS
In diagnostic imaging, the gold standard for measuring 
image quality is a statistical study that measures observers’ 
(e.g., radiologists’) diagnostic performance when using a 
given set of images. Unfortunately, the expense and complexi-
ty of such studies precludes their routine use. Therefore, 
numerical observers—algorithms that emulate human 
observer performance—are now widely used as surrogates for 
human observers. 

One particular numerical observer, known as the chan-
nelized Hotelling observer (CHO) [22], has come to be widely 
used, particularly in nuclear medicine imaging. The CHO is 
a Fisher LD applied to input features obtained by applying 
band-pass (channel) filters to the image. These channels are 
inspired by the notion of receptive fields in the human visual 
system. Because of its principled approach to image quality 
evaluation, the CHO has justifiably had a major and positive 
impact on the field and has enjoyed tremendous popularity. 

However, the CHO does not perfectly capture human-ob-
server performance; therefore, we have proposed a new 
approach in which the problem of task-based image-quality 
assessment is viewed as a supervised-learning or system-
identification problem [23]. That is, the goal is to identify the 
unknown human observer mapping, f 1x 2 , between the image 
features in x and an observer score y that reflects the human 
observer’s confidence in the presence of an abnormality in 
the image. This relationship is learned from example data 
obtained from human observers; the model is then used to 

make predictions in new situations where no human-observer 
data are available. 

In our work, we have thus far retained the channels used in 
the CHO, contained in vector x, but we feed these as inputs to a 
SVM f 1x 2 , which we train to predict observer score y based on 
training examples 1x i, yi 2 , i5 1, c, N . The resulting algo-
rithm is called a channelized SVM (CSVM).

RESULTS
In [23], we compared the CSVM to the CHO for assessment of 
image quality in cardiac SPECT imaging. In this experiment, 
two medical physicists evaluated the defect visibility in 100 
noisy images and scored their confidence of a lesion being pres-
ent on a six-point scale, following a training session involving 
an additional 60 images. The human observers performed this 
task for six different choices of the smoothing filter and two dif-
ferent choices of the number of iterations in the OS-EM recon-
struction algorithm (see Figure 7).

To demonstrate the generalization power of this approach, 
we trained both the CHO and CSVM on a broad range of imag-
es, then tested both on a different, but equally broad, range of 
images. Specifically, we trained both numerical observers using 
images for every value of the filter FWHM and five iterations of 
OS-EM and then tested the observers using all the images for 
every value of the filter FWHM with one iteration of OS-EM. 
The parameters of the CHO and CSVM were fully optimized to 
minimize generalization error measured using five-fold cross 
validation based on the training images only. Therefore, no test 
images were used in any way in the choices of the model 
parameters for either numerical observer. The numerical 
observers’ predictions of human observers’ area under the ROC 
curve (AUC) are compared in Figure 8 to human observers’ 
actual performance. In this situation, the CHO performed 
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[FIG7] A human observer’s judgment as to the presence of an abnormality (in this case a cardiac perfusion defect) depends on the 
parameters of the reconstruction algorithm used to create the image (here, the parameters are number of iterations and width 
(FWHM) of the post-reconstruction smoothing kernel). All of the images above have a defect at the location indicated by the arrow, 
but persons asked to judge whether there is a defect varied in their opinions from a value of three, meaning “defect is possibly not 
present,” to a value of six, meaning “defect is definitely present.” Our algorithm’s ability to predict this behavior permits us to optimize 
a given algorithm for this specific diagnostic task.
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 relatively poorly, failing to match either the shape or amplitude 
of the human-observer AUC curves, while the CSVM was able 
to produce reasonably accurate predictions of AUC in both 
cases. Each error bar represents the standard deviation calcu-
lated using five-fold cross validation on the testing data. 

This experiment demonstrates the potential benefit of using 
machine learning to make predictions rather than fixed models. 
Owing to the generality of its approach, machine learning can 
be used to make predictions of human-observer performance in 
many clinical tasks other than lesion detection, while CHO is 
specifically designed for lesion detection and is therefore less 
amenable to generalization. 

MAPPING OF BRAIN FUNCTION
Brain mapping is concerned with the creation of spatial repre-
sentations (maps) of the brain, shedding light on the roles of 
various brain regions in normal and disease processes. Brain 
mapping is an area of application that differs significantly 
from those we have discussed thus far in the following two 
principal respects: 1) in many situations, brain mapping is 
concerned less with the prediction outputs y than with the 
model f 1x 2  itself, from which brain maps are obtained; and 2) 
owing to the relatively small number of data examples avail-
able in brain mapping, nonlinear models are not always pre-
ferred over simpler linear methods. 

Brain mapping has been a rapidly growing field of imaging 
for at least 25 years. It is impossible to give a balanced survey of 
this field and its use of machine learning in the space available, 
so we will give only a brief overview.

In the 1980s, brain mapping was dominated by positron 
emission tomography (PET) and SPECT. The first machine-
learning approaches to the analysis of functional brain imag-
es applied artificial neural networks (ANNs) to PET images of 
glucose metabolism [24]. However, following the discovery of 
the blood oxygenation level dependent (BOLD) signal in 1990 
that allows regional neuronal activity to be measured indi-
rectly, there has been explosive growth in the use of func-
tional magnetic resonance imaging (fMRI) and related 
techniques [25]. 

The prevailing experimental and analysis paradigm in brain 
mapping is still based on simple, univariate general linear 
models (GLM) with inferential statistical tests [26], and in 
some instances their predictive, machine-learning equivalent, 
Gaussian Naïve Bayes [27]. There has been a recent surge of 
papers and interest in using related multivariate classification 
approaches, dubbed “mind reading” by some in the field. For 
recent reviews including a historical perspective see [28], and 
for an overview of the often overlooked power of simple multi-
variate approaches, e.g., principal component analysis and LD, 
applied to PET scans of disease groups, see [29], which reflects 
the results of more than 20 years of work on measuring cova-
riance structures that reflect brain networks. This network 
theme has gained considerable momentum in the more recent 
fMRI brain mapping literature with a focus on measuring the 
so-called “default mode” brain network using pair-wise, voxel 

correlations [30], or seed-voxel/behavioral partial least squares 
(PLS) [31], independent component analysis (ICA) [32], [33], 
and most recently nonlinear dynamics [34] and graph theory 
coupled with structural scans of white-matter networks [35].

Much of our own work has focused on the question of how 
to evaluate and optimize performance, and how to select the 
best signal detector from the broad repertoire of machine 
learning tools available. We have particularly focused on the 
impact of smaller sample sizes where analytic asymptotic the-
ory for multivariate machine learning models, if it exists, does 
not provide much, if any, guidance. Analysis of brain images 
is a highly ill-posed problem, in which there are typically tens 
or hundreds of thousands of voxels, but only tens or hundreds 
of brain scans. Therefore, this small sample limit is the most 
likely to be important for medical use in brain mapping.

DISCRIMINANT IMAGES AS BRAIN MAPS
To illustrate the use of machine learning in brain mapping, let 
us consider one type of study in which we wish to produce an 
image showing the regional effects of a new drug on brain 
function (two of the authors of this article, Wernick and 
Strother, conduct such analyses commercially for the pharma-
ceutical industry). To accomplish this, one can scan a group of 
N  research subjects twice, once after the subject is given the 
new drug and once after administration of placebo. One can 
then analyze these 2 N  images to obtain an image that 
describes the drug’s effect. It is hoped that this finding will 
describe not only this particular group of subjects but will also 
generalize to some broader population.

The basic idea underlying many machine-learning approach-
es to this problem is to treat each image as a vector in a high-
dimensional space, with each component representing the value 
of one voxel in a scan. In this example, our data can be viewed as 
consisting of two classes of images: drug and placebo. To reduce 
dimensionality to a manageable level, and to mitigate noise, it is 

[FIG8] Predictions of human-observer performance (AUC) by 
machine learning approach (CSVM) compared with conventional 
numerical observer (CHO). The CHO does not recognize the 
degree to which diagnostic performance declines at low and 
high levels of smoothing, an effect seen in scores along the top 
and bottom of Figure 7.
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common to transform the data using singular value decomposi-
tion (SVD). Next, a classifier is trained to discriminate drug 
images from placebo images based on the dimensionality-
reduced data.

In traditional pattern classification applications, the purpose 
of training the classifier is to make decisions about new data. 
Indeed, there are a growing number of examples of this in neu-
roimaging, for example in lie detection, or in diagnosis of dis-
ease in an individual patient. However, in many studies, the goal 
is simply to understand what intrinsically is different about the 
brain in, say, a drug and a placebo condition. In such instances, 
the desired information is encoded in the predictive model f 1x 2
itself. When a linear model is used, then the desired brain map 
is encoded in the components of discriminant vector w, which 
(after projecting back from SVD space to image space) describes 
the salience of voxels in the brain for discrimination of drug and 
placebo conditions.

Figure 9 shows an example of such an image (which we will 
refer to as a spatial activation pattern) after it is thresholded 
and overlaid on a template structural image used to bring mul-
tiple subjects’ brains into an approximate common space. The 
value of each colored voxel in this image expresses the degree to 
which that voxel contributes to the discrimination of drug ver-
sus placebo, and this image thereby depicts the spatial distribu-
tion of effect. 

Note that, in this basic introduction, we have refrained from 
describing a significant series of preprocessing steps that must 
be applied before the machine learning algorithms can be used. 
These are discussed at length in [36].

COMPARING MODELS, SAMPLE SIZE, AND SNR
Evaluations of data-analysis techniques have clearly illustrated 
that optimal tool selection depends critically on the signal and 
noise structure of the data at hand, and the sample size [37],  
[38]. For example, Figure 10 (adapted from [38]) illustrates that 
a simple linear model can outperform a flexible nonlinear model 
(in this case an ANN) until there are enough data examples to 
support estimation of the greater number of parameters inher-
ent in the nonlinear model. Nevertheless, these issues are fre-
quently ignored in the current brain mapping literature when 
discussing or comparing different analysis techniques.

We have addressed the question of choosing optimal analysis 
procedures using simulations in [39] based on the simple phan-
tom shown in Figure 11, assuming an experimental design simi-
lar to the drug-placebo study described earlier. We varied 
numerous parameters of the simulation, including number of 
examples per condition (from 20 to 100), and the amplitude of 
the activation “blobs” in the phantom (either 3% or 5% above 
baseline). We added spatially colored, temporally white, 
Gaussian noise with a standard deviation of 5% of the mean 
baseline value. We created three spatially distributed “networks” 
of blobs, and varied the correlation coefficient r (rho) between 
them (r 5 0.0, 0.5, or 0.9) and the ratio V  of their amplitude 
variance to the noise variance. This ratio can be thought of in 
analogy to dynamic range in audio, as the blob variance is a 

44 42 40

[FIG9] Spatial activation pattern in the brain, showing effect 
of the anxiolytic/antidespressant drug buspirone (Buspar) 
obtained using Fisher LD and NPAIRS split-half resampling 
applied to FDG-PET images for 12 subjects (data courtesy of 
Abiant, Inc.; analysis by Predictek, Inc.). The results show 
striatal activation (upper orange regions), likely due to the 
drug’s behavior as a dopamine D2 receptor antagonist. 
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[FIG10] These crossed learning curves (plots of classifier 
performance versus training set size) show that a nonlinear 
classifier (a neural network in this example) can be beaten by a 
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unexpected, as small data sets cannot generally support complex 
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resisting the temptation for researchers to use high-complexity 
models in every circumstance.
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[FIG11] Simulated phantom used for testing signal detection.
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source of signal in this application, which 
is of particular relevance for the field’s 
recent focus on network detection in 
brain mapping. In [39], we showed that 
SVD by itself or followed by a LD that 
adapts the subspace on which it is esti-
mated is much more sensitive to network 
interactions than thresholding of pair-
wise correlation coefficients [40].

We have repeated and extended the 
earlier work of Lukic et al. using the same 
phantom (results shown in Figure 12). 
Simulations included 3% Gaussian ampli-
tudes, with 30 baseline and 30 activation 
scans. The models tested include 1) sin-
gle-voxel t-tests using both local (GLM-S) 
and spatially pooled (GLM-P) variance 
estimates, and classification techniques 
including a 2) two-class Fisher LD, 3) nor-
malized LD (NLD), and 4) quadratic dis-
criminant (QD). All  multivariate 
techniques were estimated on an SVD 
subspace with dimension determined 
using optimization of Bayes’ evidence 
[41], as estimated in the software package 
MELODIC [42]. For LD and QD, the SVD 
basis components had length equal to 
their eigenvalues, and for NLD they were 
normalized to unit length.

Using the area under the ROC curve for false positives 
between [0.0, 0.1], signal detection was measured across the 16 
voxels at the peaks of the Gaussian blobs. Even when the t-test 
with local variance estimates (GLM-S) was the “correct” model 
(i.e., V 5 0.1) better detection performance was obtained using 
a t-test with a pooled variance estimate or adaptive, multivariate 
covariance-based detectors. In addition, GLM-S showed a signif-
icant drop in performance as the equal variance assumption was 
violated with increasing V. Variance estimation by spatially 
pooling (GLM-P) significantly improved signal detection and 
largely removed this source of model violation.

The multivariate equivalent of the GLM-S model violation is 
shown by the LD results where the assumption of equal within-
class covariances (i.e., a common network structure for baseline 
and activation scans) is violated with increasing V ; only the 
activation scans have an off-diagonal, within-class covariance 
structure that increases with V . However, LD still outperforms 
GLM-S for all but the strongest violations of the equal covari-
ance assumption for large rho and V  [Figure 12(c)]. In the NLD 
method, the standard machine-learning trick of normalizing 
input feature variances (i.e., unit SVD basis vectors) significantly 
improves signal detection performance to always better than 
GLM-P, and largely removes the LD drop with increasing V.
Finally, using the correct multivariate model that assumes dif-
ferent within-class covariances, a QD, further significantly 
improves performance to close to perfect (partial ROC area 

approaches 0.1). QD, as used here, represents an alternative to 
SVM as a solution to the problem of unequal class distributions 
shown in Figure 2. 

The relative performance of LDs and SVM remains contro-
versial in brain mapping with some papers claiming SVM is 
superior [43] and others that they are approximately equal [44], 
but that they respond to different input SNR structures differ-
ently as suggested by the analysis of Figure 2. Moreover, our 
most recent simulation results show that signal detection per-
formance is a very strong function of the SVD basis set size and 
performance may be improved even further than shown in 
Figure 11 by using a resampled estimate of the optimal SVD 
subspace based on the reproducibility metric outlined below.

Our final simulation results relate to a comparison of 
Bayesian kernel methods with a generalized likelihood ratio test 
for estimating local activation in functional neuroimages. In 
[45], we compared spatial signal detection using the superposi-
tion of spatial Gaussian kernels with their parameters estimated 
from the data using a maximum a posteriori (MAP) technique 
based on a reversible-jump Markov-chain Monte Carlo 
(RJMCMC) algorithm and a RVM. RVM and RJMCMC were bet-
ter signal detectors than all of the other techniques tried in [39] 
and achieved values of 0.80 and 0.82 for the partial area under 
the ROC curve. These performance values cannot be directly 
compared to Figure 11 as the simulation parameters were quite 
different. However, the RJMCMC took tens of hours to compute, 
even in our simple phantom, while the RVM was computed in 
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[FIG12] In (a)–(c), performance in detection of brain activation for five models, as a 
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activated brain regions, are shown. The QD and NLD perform best, improving with 
strength of network (increasing V and rho), while the performance of univariate 
methods lags behind, and actually deteriorates as the signal strength increases.
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only minutes. The relative utility of SVM, RVM, and other kernel 
techniques in brain mapping (e.g., kernel PCA, [28]; kernel 
canonical correlation analysis [46]) remains to be established. 

DATA-DRIVEN PERFORMANCE METRICS
In brain mapping, as in general machine-learning applications, 
it is very important to optimize and evaluate predictive models 
and to select their most salient features. These tasks must be 
guided by a quantitative metric of performance. Prediction 
accuracy often plays this role, for example to guide a greedy 
search procedure to select the most salient subset of voxels [26]. 
Some tradeoffs of such purely prediction-driven analysis 
approaches are discussed in [4] and [27].

Although prediction accuracy alone can be an effective met-
ric for general machine-learning problems, neuroimaging also 
demands that the spatial pattern (encoded by the predictive 
model) be reproducibile between different groups of subjects or 
different scans of the same subject. Together with prediction 
accuracy, reproducibility turns out to be an important metric 
that is a very effective data-driven substitute for ROC analysis. 

Strother et al. [9] proposed a novel split-half resampling 
framework dubbed NPAIRS, which simultaneously assesses 
prediction accuracy and reproducibility. The tradeoff between 
achievable prediction accuracy and reproducibility of the 
model is related to the classic tradeoff of bias and variance in 
estimation theory. In this application, prediction accuracy is 
generally gained at the expense of decreased reproducibility of 
the spatial patterns, and vice versa. By plotting prediction 

accuracy versus reproducibility as a function of some parame-
ter (such as number of SVD basis vectors), we are able to 
assess the gamut of this tradeoff, in close analogy to the ROC 
curve, the precision-recall curve from the information retriev-
al field, or the bias-variance curve from statistics. We call this 
type of plot produced by the NPAIRS analysis a ( p, r) curve.

To compute a (p, r) curve using NPAIRS, the independent 
observations of the data set are split into two independent halves 
(e.g., across subjects): training and test sets. Prediction accuracy 
is obtained by applying the spatial patterns estimated in one 
split-half set (i.e., training) to estimate scan class labels in the 
other split-half set (i.e., test). The roles of the two split-half sets 
are then reversed so that the each set has been used once as a 
training set (to produce a spatial activation pattern) and once as 
a test set. From these results, two prediction accuracy estimates 
(p) are computed and averaged to obtain the overall prediction 
accuracy. Next, the reproducibility of the two independent spa-
tial activation patterns is computed as the correlation (r)
between all pairs of spatially aligned voxels in the two patterns. 
This correlation value r is directly related to the available SNR 
in each extracted pair of split-half patterns. If one forms a scat-
ter plot consisting of the voxel values in one spatial pattern ver-
sus corresponding values in the other, one obtains a distribution 
in which the principal, or signal, axis has associated eigenvalue 
111 r 2 , and the uncorrelated minor, or noise, axis has eigen-
value 112 r 2 . Therefore, one can define a global data set SNR 
metric gSNR as

  gSNR5"1 111 r 2 2 112 r 2 2 / 112 r 2 5"2r/ 112 r 2 .
In NPAIRS, many split-half resamplings are performed and 

the average, or median, of the resulting p and r distributions 
are recorded. This resampling approach has the benefits of 
smooth robust metrics obtained with the 0.6321 bootstrap [8]. 
Finally, a robust consensus technique is used to combine the 
many split-half spatial patterns into a single pattern described 
on a Z-score (standard normal) scale, providing a robust 
Z-scoring mechanism for any prediction model that produces 
voxel-based parameter estimates.

In [29], NPAIRS was applied to PET, and it has been also 
been applied to fMRI [47]–[49]. While NPAIRS may be applied 
to any analysis model, we have particularly focused on LDs, 
and more recently QDs, both built on an SVD basis. This 
allows us to 1) regularize the model by choosing soft (e.g., 
ridge) or hard thresholds on an SVD or other basis set [50], 2) 
maintain the link to covariance decomposition that has proven 
so useful in PET for elucidating network structures, and 3) 
produce whole-brain activation maps that enhance the likeli-
hood of discovering new features of brain function and disease.

Figure 13 shows an example of how NPAIRS can be used to 
study the influence of the key parameters of an image analysis 
procedure, and thus permit one to make an optimal selection of 
these parameters. In this example, two parameters of an fMRI 
image analysis procedure are examined, the number of SVD 
basis vectors (defining model complexity) and the number of 
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[FIG13] In the NPAIRS framework, a prediction-reproducibility 
(p,r) curve shows the tradeoff between prediction accuracy 
(vertical axis) and reproducibility of the resulting brain map 
(horizontal axis). Optimal performance is achieved when the 
curve comes closest to the ideal point (1,1), achieving the 
smallest distance M. This provides a basis for optimizing image 
analysis procedures, in this example specifying the best 
parameters in a particular fMRI data analysis problem (number 
of SVD components and number of cycles in a particular cosine 
detrending step). 
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half cosines used for detrending [36]. (We will not elaborate 
here on details of the SVD and detrending techniques; we show 
this example only to illustrate how NPAIRS can in general be 
used to select optimal model parameters.)

In a (p, r ) plot, ideal performance is achieved by reaching 
the upper right corner of the space, where prediction accuracy 
(described as posterior probability in Figure 13) reaches 1.0 and 
reproducibility also achieves 1.0. Thus, one approach to defining 
the optimal choice of parameters is to determine the point at 
which the (p, r) curve attains the least Euclidean distance ( M)
to the point (1,1). In this example, we see that performance [dis-
tance to (1,1)] improves, then worsens, as the number of SVD 
components increases. The effect of the cosine detrending 
parameter is weaker, but indicates that one and a half cycles is a 
somewhat better choice than two cycles. In this graph, the 
hook-shaped portion between five and ten SVD components rep-
resents reproducible artifacts that are commonplace in fMRI.

The NPAIRS analysis framework provides a very useful way 
to understand and optimize model performance in the challeng-
ing problem of brain mapping, and perhaps in other applica-
tions in which one is interested not only in making accurate 
predictions but also in producing reliable information on the 
factors driving these predictions.
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D
a t a - d r i v e n 
analysis meth-
ods, such as 
blind source 
s e p a r a t i o n 

(BSS) based on independent 
component analysis (ICA), 
have proven very useful in 
the study of brain function, 
in particular when the 
dynamics are hard to model 
and underlying assumptions 
about the data have to be 
minimized. Many problems in medical data analysis involve the 
analysis of multiple data sets, either of the same type as in a group 
study where inferences are based on the same modality, e.g., group 
inferences from functional magnetic resonance imaging (fMRI) 
data collected from multiple subjects, or from different modalities 
as in the case of data fusion where inferences have to be drawn 
from data collected from multiple modalities such as fMRI, elec-
troencephalography (EEG), and structural MRI (sMRI), for the 
same group of subjects. Canonical correlation analysis (CCA) [1], 
another data-driven approach, and its extension to multiple data 
sets—multiset CCA (M-CCA) [2]—provide a natural framework 
for both types of study. In this article, we show how CCA and 
M-CCA can be used for the analysis of data from a single modality 

for group inferences as well 
as fusion of data from mul-
tiple modalities using a fea-
ture-based approach, 
discuss the advantages of 
the CCA-based approach, 
and compare its perfor-
mance to ICA that has been 
successfully applied to both 
types of study.

BACKGROUND
Analysis of multiple sets of 

data, either of the same type as in multitask or multisubject data, 
or of different type or nature as in multimodality data, is inherent 
to many fields and is a particularly challenging problem in bio-
medical image analysis because of the rich nature of the data 
made available by different imaging modalities. Analysis of multi-
ple sets of same type of data is an integral part of biomedical 
imaging studies, e.g., when estimating brain activations in fMRI 
data from a group of subjects or when analyzing data from two 
different experimental conditions such as fMRI data from subjects 
scanned at different alcohol levels while performing a given task. 
Fusion of data from different modalities promises to provide a 
better understanding of the problem at hand since each modality 
has its own advantages as well as limitations. In the case of bio-
medical imaging, an increasing number of studies are collecting 
multiple measurements, e.g., fMRI data, sMRI data, EEG data, 
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genetic data, and others from 
the same participants. Efficient 
use of all this information for 
inference, while minimizing 
assumptions made about the 
underlying nature of the data 
and relationships, is an arduous 
task but is one that promises 
significant gains in understand-
ing of the human brain function. The main purpose of analyzing 
multiple modalities is to utilize the common as well as unique 
information from complementary modalities to better understand 
neuronal activity. For example, the fusion of fMRI data and EEG 
data—fMRI having good spatial resolution and EEG having high 
temporal resolution but poor spatial localization of brain activi-
ty—provides a better spatio-temporal mapping of the brain func-
tion. In this article, we address both types of problems: fusion of 
data sets collected from multiple modalities and the analysis of 
multisubject data from the same modality. 

Approaches to solve these multidata set problems can be 
broadly classified as being either model based or data driven. 
Model-based approaches investigate the goodness-of-fit of the data 
to the prior knowledge about the experimental paradigm and the 
properties of the data, for example the general linear model 
approach [3] for the analysis of fMRI data utilizes the prior knowl-
edge of the hemodynamic properties of the data and the task. 
While model-based approaches have been extensively used in bio-
medical data analysis, their use is limited when the dynamics of 
the experiment become hard to model, e.g., when studying rest 
state or naturalistic paradigms such as driving or watching a 
movie. Data-driven methods are suitable for the analysis of such 
complex paradigms as they minimize the assumptions on the 
underlying properties of the data by decomposing the observed 
data based on a generative model. The most common decomposi-
tion is given by X5 AS (with the possibility of including an addi-
tive noise term), where X is the mixture that is factorized into 
latent variables through two matrices—a mixing matrix A and a 
component (source) matrix S. For uniqueness of the decomposi-
tion (subject to scaling and permutation ambiguity), constraints 
are applied to the two matrices such as sparsity or independence of 
the components. Model-based approaches provide a similar 
decomposition, however they differ from data-driven methods in 
their modeling of the matrix A, which is based on prior knowledge 
of the experiment and data in the form of regressors. ICA is a pop-
ular data-driven BSS technique that imposes the constraint of sta-
tistical independence on the components, i.e., source distributions. 
It has been successfully applied to a number of biomedical data 
such as fMRI [4], [5] and EEG [6]. A number of approaches have 
been proposed to solve the ICA problem, a popular one being the 
maximum likelihood estimation technique that finds an approxi-
mation of the underlying sources by using the maximum likeli-
hood estimator of the demixing matrix W such that Ŝ5WX.
Second-order data-driven methods have also been used for bio-
medical data analysis such as linear discriminant analysis, partial 
least squares, CCA, and source-separation algorithms such as the 

Molgedey Schuster algorithm 
[7]. CCA has been used to find 
latent sources in single subject 
fMRI data by taking advantage of 
the spatial or temporal autocor-
relation in the data [8]. An exten-
sion of the Molgedey Schuster 
algorithm has also been used to 
extract sources from two or 

more data sets based on the temporal autocorrelation in fMRI data 
[9]. In this article, we focus on reviewing CCA and M-CCA meth-
ods for data fusion and multisubject analysis of biomedical data 
and putting these into perspective through comparisons with 
closely related ICA-based methods. 

DATA FUSION
Data-driven fusion of multimodality data is an especially challeng-
ing problem since brain imaging data types are intrinsically dis-
similar in nature, making it difficult to analyze them together 
without making a number of assumptions, most often unrealistic 
about the nature of the data. Unlike data integration methods, 
which tend to use information from one modality to improve the 
other, data fusion techniques incorporate both modalities in a 
combined analysis, thus allowing for true interaction between the 
different data types [10]. Instead of entering the entire data sets 
into a combined analysis, an alternate approach is to reduce each 
modality to a feature, which is a lower-dimensional representation 
of selected brain activity or structure, and then to explore associa-
tions across these feature data sets through variations across indi-
viduals. Investigating variations across subjects or between 
patients and controls at the feature-level provides a natural way to 
find multimodality associations [11] and also alleviates the difficul-
ty of fusing data types of different dimensionality and nature as 
well as those that have not been recorded simultaneously. Feature-
level analysis has been successfully used in data-driven fusion 
techniques such as joint-ICA (jICA) [11] and CCA-based fusion 
[12]. Given two feature data sets X1 and X2, the jICA approach 
involves concatenating the data sets alongside each other and then 
performing ICA on the concatenated data set as in 
[X1X2 45 A[S1S2 4. Joint-ICA assumes that the sources have a 
common modulation profile A across subjects, which is a strong 
constraint considering that the data come from two different 
modalities. Parallel-ICA (paraICA) [13] is another  ICA-based fea-
ture-level fusion approach that has been successful in identifying 
relationships between neuroimaging data types as well as between 
genetic and phenotypic data. The method performs separate ICA 
on the different modalities in parallel while enhancing intrinsic 
correlations across the modalities. While jICA requires the two 
modalities to have relatively similar dimensions, the two separate 
ICA in paraICA is more flexible in that it allows the modalities to 
have different dimensions. For a review of feature-based fusion 
methods using ICA and their application to biomedical imaging, 
refer to [14] and [15]. 

Recently, it has been shown that CCA and M-CCA can allow 
a more flexible approach to the fusion problem. The  CCA-based 

MANY PROBLEMS IN MEDICAL DATA 
ANALYSIS INVOLVE THE ANALYSIS OF 
MULTIPLE DATA SETS, EITHER OF THE 
SAME TYPE AS IN A GROUP STUDY 
WHERE INFERENCES ARE BASED ON 

THE SAME MODALITY.
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fusion method also adopts a 
feature-based approach and 
similarly models the feature 
data set from each modality as 
a linear mixture of compo-
nents with varying levels of 
activations for different sub-
jects. Thus, the relationship 
between modalities is based on 
intersubject covariations as shown in Figure 1(a). The scheme 
is flexible as the connections are based only on the linear mix-
ing model and intersubject covariances across modalities, and 
the modulation profiles of components are not constrained to 
be exactly the same as in jICA. Successful application of CCA 
to feature-based fusion of two modalities has been shown in 
[12] and of M-CCA to the fusion of three brain imaging modal-
ities has been shown in [16]. CCA and M-CCA have also been 
successfully used for fusion in other fields such as remote 
sensing [17] and pattern recognition [18]. 

MULTISUBJECT ANALYSIS
M-CCA can be used to perform group BSS, 
i.e., source separation of single modality 
data from multiple subjects [19]. While it is 
straightforward to apply data-driven tech-
niques such as BSS to each subject’s data 
separately, the challenge lies in matching 
the separated sources across different data 
sets, which is straightforward in model-
based methods. M-CCA provides an effec-
tive tool to perform group BSS while 
maintaining the correspondence of the 
source estimates across different data sets 
and retaining the intersubject source vari-
ability. The generative model for M-CCA for 
BSS is shown in Figure 1(b). A number of 
data-driven methods have been proposed 
for achieving group BSS and can be broad-
ly categorized into two different approach-
es. One approach is to concatenate multiple 
data sets to aggregate the common fea-
tures, perform analysis in the common fea-
ture space to estimate group components, 
and back-project the estimated group com-
ponents into each data set to obtain indi-
vidual components with cross-data set 
cor  respondence. Group ICA [20] and tenso-
rial ICA [21] fall into this category. The 
other approach assumes a generative model 
on latent components with cross-data set 
correspondence and performs group com-
ponent extraction using statistical mea-
sures of correspondence. M-CCA and 
independent vector analysis (IVA) [22] fall 
into this category; however, M-CCA and IVA 

are complementary in modeling 
component correspondence 
[19]. Compared with methods 
based on data set concatenation, 
M-CCA is more flexible in identi-
fying cross-data set variation of 
the components, which can be 
used for making group level 
 inferences in different ways. 

M-CCA has been shown to be successful for the group analysis of 
fMRI data in [19]. 

OUTLINE
In this article, we begin with a description of the main statistical 
tools for fusion and multisubject analysis—CCA and M-CCA. We 
then provide a brief introduction to the medical imaging data 
that we will be using to demonstrate CCA- and ICA-based analy-
sis techniques. There are two formats in which the data will be 
utilized by the approaches we present: 1) the whole multidimen-
sional data, e.g., for fMRI data, both the time and the volume in-
formation contained in all image slices of the brain, and 2) 

[FIG1] Generative models for fusion and source separation are shown in (a) and (b). To 
avoid overfitting, typically dimension reduced data matrices are used instead of the 
high-dimensioned data X1 and X2. For data fusion, the spatial or temporal dimensions 
are reduced. For group analysis, the temporal dimension is reduced.
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lower-dimensional features extracted from the whole data to rep-
resent certain aspects of the data, e.g., for fMRI data, areas of the 
brain where neuronal activity due to task is exhibited excluding 
the time information for these areas. The presented fusion ap-
proaches are carried out at the feature-level using CCA, M-CCA, 
or jICA while the group analysis is carried out on whole multidi-
mensional data sets using M-CCA and group-ICA. To further il-
lustrate the use of the methods, we provide a number of examples 
of medical imaging applications for the presented techniques. 

CCA 
CCA has been traditionally used to analyze relationships between 
two sets of variables [1]. CCA seeks two sets of transformed vari-
ates such that the transformed variates assume maximum correla-
tion across the two data sets, while the transformation within each 
data set are uncorrelated. CCA is an attractive analysis tool, based 
on second-order statistics and is less stringent than those based on 
stronger statistical measures such as ICA. Also, being multivariate, 
it can provide increased statistical power over univariate methods. 

Given two data sets X1 [ Rn3p and X2 [ Rn3q, CCA finds 
the linear combinations X1W1 and X2W2 that maximize the 
pair-wise correlations across the two data sets. A1  and 
A2 [ Rn3d, d # min(rank(X1, X2)), are known as canonical 
variates and W1 [ Rp3d  and W2 [ Rq3d  are the canonical 
coefficients vectors. 

In the deflationary approach, the method finds the first pair of 
canonical coefficient vectors w1

112  and w2
112,  (w1

112 [ Rp31,
w2
112 [ Rq31) that maximize linear combinations of the two data 

sets given by 

 max
w1
112, w2

112corr 1X1w1
112, X2w2

112 2
to obtain the first pair of canonical variates given by 

a1
1125 X1w1

112 and a2
1125 X2w2

112.

The remaining d2 1 canonical variates can be calculated similar-
ly, with the following additional constraints on the columns of the 
A matrices, i.e., ak

1i2 (i5 1, c, d, k5 1, 2): 
The canonical variates are uncorrelated within each data set  ■

and have zero mean and unit variance, i.e., 

Ak
TAk5 I, k5 1, 2. (1)

The canonical variates have nonzero correlation only on  ■

their corresponding indices, and have correlation coefficients, 
rk, l
112 $ rk, l

122, c, $ rk, l
1d2, where rk,l

1i2 5 ak
1i2Ta l

1i2, i.e., 

Ak
TAl5Rk,l, k 2 l, k, l5 1, 2, (2)

where Rk,l5 diag 1rk,l
112, c, rk, l

1d2 2 .
The CCA problem can be posed as a constrained optimization prob-
lem using Lagrange multipliers and the canonical covariates can be 
calculated by solving a generalized eigenvalue solution, where the 
columns of W1 and W2 are the eigenvectors of the two matrices 

CX1

21CX1, X2
CX2

21CX2, X1
and CX2

21CX2, X1
CX1

21CX1, X2
, where CX1,X2

is the 
cross-correlation matrix of X1 and X2 1CX2, X1

5 CX1, X2

T 2 , and CX1

and CX2
 are the autocorrelation matrices of X1 and X2, respectively. 

M-CCA 
The CCA problem can be extended to multiple data sets using the 
framework developed in [2]. In contrast to CCA where correlation 
between two canonical variates is maximized, M-CCA optimizes an 
objective function of the correlation matrix of the canonical vari-
ates from multiple random vectors such that the canonical vari-
ates achieve maximum overall correlation. Furthermore, due to 
the consideration of multiple random vectors, M-CCA can not be 
solved by a simple eigenvalue decomposition problem as in the 
case of CCA. Instead, M-CCA takes multiple stages such that in 
each stage, one group of canonical variates is obtained by optimiz-
ing the objective function with respect to a set of transformation 
vectors. For the second stage and higher stages in M-CCA, the esti-
mated canonical variates are constrained to be uncorrelated to the 
ones estimated in the previous stages. M-CCA reduces to CCA 
when the number of random vectors is two. Given K  data sets, the 
canonical variates 

Ak5 XkWk, k5 1, 2, c, K  (3)

can be estimated through a deflationary approach such that we 
first determine the initial K  vectors corresponding to the first 
source from each of the K  data sets using 

5w1
112, w2

112, c, wK
1126 5 arg max

w
J 1rk, l

112 2
and then the next vectors using the same procedure such that wk

1i2
is orthogonal to the previous estimates, i .e . ,  to 
5wk

112, wk
122, c, wk

1i2126, k5 1, 2, c, K. Here, rk, l
1i2  is the corre-

lation between the ith canonical variates, from the kth and lth 
data sets, estimated in the final decomposition and J 1 # 2  is an 
appropriately chosen cost. The canonical correlations can be 
obtained by optimizing a number of cost functions proposed in 
[2], e.g., maximizing the sum of squared correlations among the 
canonical variates. 

We can summarize the M-CCA procedure based on the sum of 
squares correlation (SSQCOR) cost as 

Stage 1  ■

5w1
112, w2

112, c, wK
1126 5 arg max

w
e a

K

k,l51
|rk,l
112|2f  (4)

Stage 2 to  ■ d
 for i5 2:d

5w1
1i2, w2

1i2, c, wK
1i26 5 arg max

w
e a

K

k, l51
|rk,l
1i2|2f

 s.t. wk
1i2'5wk

112, wk
122, c, wk

1i2126, k5 1, 2, c, K
 end

For M-CCA , up to d  canonical variates can be calculated iterative-
ly, where d #  min(rank(Xk)). In [2], Stage 1 is solved by first 
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 calculating the partial derivative 
function of the SSQCOR cost 
with respect to each wk

112  and 
equating it to zero to find the 
stationary point. Since the 
SSQCOR cost is a quadratic 
function of each wk

112, the partial 
derivative is a linear function of 
wk
112 and hence, the closed-form 

solution can be derived. Starting 
from an initial point, each wk

112 vector is updated in sequel to guar-
antee an increase in the cost function and a sweep through all the 
wk
112 constitutes one step of the iterative maximization procedure. 

The iterations are stopped when the cost convergence criterion is 
met and the resulting wk

112 vectors are taken as the optimal solu-
tion. Stage 2 and higher stages are solved in a similar manner with 
the cost function replaced by a Lagrangian incorporating the 
orthogonality constraints on the canonical coefficient vectors. 

Next, we explain the biomedical imaging modalities, the gener-
ative models, and some examples of the application of CCA and 
M-CCA for data fusion and source-separation applications. 

MEDICAL IMAGING MODALITIES 
AND FEATURE GENERATION
In this article, we demonstrate the effectiveness of the CCA-based 
approach using three modalities: fMRI, sMRI, and EEG. Each of 
these modalities provides limited information about the human 
brain. FMRI is a noninvasive brain imaging technique that pro-
vides information about brain function by measuring the changes 
in blood-oxygenation in the brain. SMRI provides information 
about the tissue type of the brain—gray matter (GM), white mat-
ter (WM), and cerebrospinal fluid (CSF). EEG records brain func-
tion by measuring the brain electrical field through the scalp. For 
fusion, we adopt a feature-level analysis to derive a lower dimen-
sional feature from the imaging data as in [14] and [20]. A feature 
is a subdata set extracted from one type of data, related to a select-
ed brain activity or structure. These features can then be analyzed 
to integrate or fuse the information across multiple modalities. 
Next, we briefly introduce the data types, the preprocessing used 
for each of these data types, and the types of features we generate 
for the fusion analysis from each of the data sets. 

fMRI
FMRI data provide a measure of brain function on a millimeter 
spatial scale and a subsecond (and delayed) temporal scale. The 
data consists of repeatedly imaging the 3-D volume of the brain 
slice-by-slice, usually while the subject performs a particular task. 
A number of preprocessing are steps important for fMRI—slice-
timing correction to correct for the sequential acquisition of the 
slices, registration to correct for subject motion in the scanner, 
spatial filtering to reduce noise, and spatial normalization to com-
pare brains across different individuals and to use standardized 
atlases to identify particular brain regions. For fMRI data, we use 
the task-related spatial activity map as calculated by the GLM 
approach as the spatial feature for the fusion analysis. 

sMRI
We define sMRI analysis as 
the acquisition and process-
ing of T1-, T2-, and/or proton 
density-weighted images. 
Multiple structural images are 
often collected to enable mul-
t i spec t ra l  s egmenta t ion 
approaches. The primary out-
come measure in a structural 

image may include a measure of a particular structure (e.g., 
volume or surface area) or a description of the tissue type, 
(e.g., GM or WM). There are many methods for preprocess-
ing sMRI data that may include bias field correction [inten-
sity changes caused by radio frequency (RF) or main 
magnetic field (B0) inhomogeneities] [23], spatial linear or 
nonlinear [24] filtering, and normalization. MR images are 
typically segmented using a tissue classifier producing imag-
es showing the spatial distribution of GM, WM, and CSF. 
Both supervised and automated segmentation approaches 
have been developed for sMRI analysis [25]–[27], and each 
technique is optimized to detect specific features. We use 
probabilistically segmented GM images as features of sMRI 
data for the fusion analysis. 

EEG
EEG is a technique that measures brain function by recording 
and analyzing the scalp electrical activity generated by brain 
structures. Like MRI, it is a noninvasive procedure that can be 
applied repeatedly in patients, normal adults and children, 
with virtually no risks or limitations. Local current flows are 
produced when brain cells are activated. It is believed that 
contributions are primarily driven by large synchronous popu-
lations of firing neurons. The recorded electrical signals are 
then amplified, digitized, and stored. 

Event-related potentials (ERPs) are small voltage fluctua-
tions resulting from evoked neural activity and are one of 
many ways to process EEG data. These electrical changes are 
extracted from scalp recordings by computer averaging epochs 
(recording periods) of EEG time locked to repeated occurrenc-
es of sensory, cognitive, or motor events. The spontaneous 
background EEG fluctuations, which are typically random rel-
ative to when the stimuli occurred, are averaged out, leaving 
the event-related brain potentials. These electrical signals 
reflect only that activity that is consistently associated with 
the stimulus processing in a time-locked way. The ERP thus 
reflects, with high temporal resolution, the patterns of neu-
ronal activity evoked by a stimulus. Due to their high temporal 
resolution, ERPs provide unique and important timing infor-
mation about brain processing and are an ideal methodology 
for studying the timing aspects of both normal and abnormal 
cognitive processes. More recently, ICA has been used to take 
advantage of EEG activity that may be averaged out by com-
puting an ERP [6]. For the feature-based fusion analysis we 
use ERPs as the EEG feature. 

M-CCA PROVIDES AN EFFECTIVE TOOL 
TO PERFORM GROUP BSS WHILE 

MAINTAINING THE CORRESPONDENCE 
OF THE SOURCE ESTIMATES 

ACROSS DIFFERENT DATA SETS AND 
RETAINING THE INTERSUBJECT 

SOURCE VARIABILITY.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [44]   JULY 2010

DATA FUSION
In this section, we present the 
data fusion scheme at the feature 
level using CCA and M-CCA. We 
explain the data generation 
model, the modeling assump-
tions for feature-based fusion 
using CCA methods, and the 
dimension reduction step that is 
used to avoid overfitting. Additionally, we demonstrate the use of 
the method by presenting two examples and compare the CCA-
based methods with ICA-based fusion method, jICA. 

GENERATIVE MODEL FOR DATA FUSION
We develop the following generative model for data fusion. Given 
two feature data sets X1 and X2, we seek to decompose them into 
two sets of components, C1 and C2, and corresponding modula-
tion profiles (intersubject variations), A1 and A2 as shown in 
Figure 1(a). The connection across the two modalities can be eval-
uated based on correlations of modulation profiles of one modality 
with those of the other. If the modulation profiles are uncorrelated 
within each modality, each component can be associated with only 
one component across modalities. This one-to-one correspon-
dence aids in the examination of associations across modalities. 
The generative model is thus given by 

Xk5 AkCk, for    k5 1, 2,

where Xk [ Rn3vk, Ak [ Rn3d, Ck [ Rd3vk, vk is the number of 
variables in Xk, n is the number of observations in Xk, and d #
min[rank(X1,X2)]. The modeling assumptions imply that the 
modulation profiles, given by columns of A1 and A2 satisfy the 
constraints given by (1) and (2). In the feature-based fusion 
approach [12], the intersubject covariations across the two modali-

ties, i.e., the correlations across 
the modulation profiles are iden-
tified using CCA as described in 
the section “CCA.” The feature-
based fusion scheme models the 
modulation profiles A1 and A2 as 
the canonical variates obtained 
by CCA, and based on the modu-
lation profiles identified, the 

associated components can be calculated using least squares 
approximations given by 

Ĉk5 1Ak
TAk 221Ak

TXk, for    k5 1, 2.

Thus, this fusion approach identifies the cross-modality covaria-
tions, and based on these, it decomposes each feature data set into 
a set of components—such as spatial areas for fMRI/sMRI or tem-
poral segments for EEG. 

Typically, the number of variables (voxels/time points) in the 
feature data sets is much larger than the number of observations 
(subjects). Due to the high dimensionality and high noise levels in 
the brain imaging data, order selection is critical to avoid overfit-
ting the data. Transforming each set of features to a subspace with 
smaller number of variables helps reduce any redundancy in the 
analysis. The dimension is chosen to fall in a range where the 
results are stable and most of the variance in the data can be 
retained. Dimension reduction is performed on the feature data set 
using singular value decomposition (SVD), and we perform CCA 
on the dimension-reduced data sets. We assume a noiseless gener-
ative model since we perform dimension reduction. i.e., the 
assumption in the SVD-based dimension reduction scheme is that 
small singular values of the matrix that are discarded correspond 
to additive noise. 

The generative model we have described with respect to two 
data sets can be extended to multiple data sets. For example, for 
three data sets the CCA fusion method again models the modula-
tion profiles A1, A2, and A3 as the canonical variates—however, it 
is worth noting that in this case the canonical variates are obtained 
using M-CCA. The procedure for M-CCA is as described in the sec-
tion “M-CCA” The calculation of the components as well as the 
dimension reduction steps for the features are the same as 
described above. 

COMPARISON WITH jICA
Joint-ICA has been successfully used for the fusion of data from 
two modalities such as fMRI, EEG, and sMRI data [11], [28]. The 
jICA approach is similar to the CCA-based fusion approach in that 
it is a second-level analysis based on lower-dimensional features of 
the data and the associations across the two modalities are 
based on intersubject covariations. However, there are a num-
ber of differences in the modeling assumptions of the two 
methods. Most importantly, jICA assumes that the sources 
share a common modulation profile while CCA-based fusion 
models the modulation profiles of each modality to be separate. 
Given the diverse nature of the two modalities, assuming that [FIG2] Implementation steps for CCA-based fusion.
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THE ANALYSIS OF MORE THAN 
TWO BRAIN IMAGING MODALITIES 

COLLECTIVELY, E.G., fMRI, sMRI, AND 
EEG, CAN HELP IDENTIFY INTERESTING 

ASSOCIATIONS ACROSS BRAIN 
STRUCTURE AND FUNCTION.
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the modulations are exactly the 
same across different modali-
ties can be a very strong con-
straint. Another important 
difference between the meth-
ods is that the associations 
across modalities in CCA-based 
fusion are solely based on intersubject covariations whereas the 
associations in jICA are based on the  assumptions of common 
profiles as well as statistical independence among the joint 
sources. While CCA provides a relatively less constrained solu-
tion to the fusion problem, jICA utilizes higher-order statistical 
information by employing ICA. When correlations are strong 
between the two modalities, the assumption of a common mix-
ing matrix may be justified and the jICA technique could 
potentially improve approximation of the joint sources by 
employing higher-order statistics in the estimation. However, 
by allowing for separate mixing matrices, CCA-based fusion 
promises to identify common as well as distinct components 
and reliably estimates the amount of association between the 
two modalities. For a detailed comparison of the two models as 
well as experimental results based on simulated fMRI-like and 
ERP-like data, refer to [12]. 

APPLICATION OF CCA TO 
FUSION OF TWO MODALITIES
The CCA-based fusion approach has been successfully used to 
analyze the spatio-temporal associations between fMRI data 
and EEG data, and also, to detect functional and structural 
relationships between fMRI data and sMRI data in [12]. Here 
we discuss few of the key findings on the fusion of fMRI and 
sMRI data and compare the results to those obtained using the 
jICA method presented in [12]. 

FUSION OF fMRI AND sMRI 
FMRI data provides information about brain function while 
sMRI data contains information about brain structure. Fusing 
information from the two modalities could help to understand 
the link between brain structure and function. We demon-
strate the fusion approach on sMRI data and fMRI data from 37 
patients with schizophrenia and 36 healthy controls carrying 
out an auditory sensorimotor task consisting of patterns of 
eight tones, alternately increasing and decreasing in pitch. The 
subjects are instructed to press a button with their right 
thumb for each presented tone. Details of the experimental 
setup are given in [29]. The fMRI data and sMRI data are con-
verted into lower-dimensional features using the preprocess-
ing techniques described in the section “Medical Imaging 
Modalities and Feature Generation.” The reduced dimension 
for both features was empirically chosen as 18. 

The pair of components corresponding to profiles showing 
the strongest correlation (r1, 2

112 5 0.87) across the two data sets 
demonstrate significant group differences (a # 0.05: 
tfMRI524.92 and tsMRI524.80) between patients with schizo-
phrenia and healthy controls (fMRI map, sMRI map, and scat-

ter plots of the profiles are 
shown in Figure  3). The fMRI 
component map shows that 
healthy controls have more 
functional activity in the tem-
pora l  areas  (act ivat ions 
enclosed in blue box) and less 

motor activity (activations enclosed in red box) compared to 
patients with schizophrenia. The GM map shows that healthy 
controls have more GM compared to the patients in frontal 
(activations enclosed in purple box) and temporal areas (acti-
vations enclosed in blue box). These results reveal associations 
between the modalities in adjacent or close sets of voxels as 
well as remotely located voxels. This is consistent with previ-
ous studies showing changes in both brain structure and brain 
function in frontal and temporal lobe regions in schizophrenia 
and is also in agreement with previous studies on fusion of 
fMRI and GM [28], [30], [31]. 

We also perform jICA on this data set using the fusion ICA 
toolbox (http://icatb.sourceforge.net/fusion/fusion_startup.php). 
The result obtained using jICA, shown in Figure 4, is similar to 
the one obtained using CCA (Figure 3). However, CCA shows 
additional motor and temporal areas. Also the structural regions 
are more localized and well defined in the CCA-based result. In 
general, however, the jICA components are mostly sparse, at least 
sparser than components obtained using CCA-based fusion, due 
to the non-Gaussian emphasis by ICA algorithms such as [32]. In 
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[FIG3] The fMRI component, sMRI component, and scatter plots 
of profiles for pair of components identified by CCA as 
maximally correlated. The profiles for both fMRI and sMRI are 
significantly different (a" 0.05) between patients and controls. 
Patients with schizophrenia show more functional activity in 
motor areas and less activity in temporal areas associated with 
less gray matter as compared to healthy controls. The activation 
maps are scaled to Z values and thresholded at Z5 3.5.

FUSING INFORMATION FROM THE 
TWO MODALITIES COULD HELP TO 
UNDERSTAND THE LINK BETWEEN 

BRAIN STRUCTURE AND FUNCTION.
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the fusion example presented here, this was seen for the fMRI 
result but not for the sMRI result. The sparseness of the sMRI 
results for CCA is hence interesting and may be due to the fact 
that CCA relaxes the strong constraint of common profiles for the 
pair of components. 

APPLICATION OF M-CCA FOR 
FUSION OF MULTIPLE MODALITIES
A number of approaches have been proposed to integrate or fuse 
multitask or multimodality data. However, these have mostly been 
limited to two modalities or multiple data sets from the same 
modality. In [16], M-CCA was demonstrated to be successful in fus-
ing data from three modalities. Next, we highlight the key findings 
from [16] and present new results that  demonstrate the increase in 
sensitivity of the analysis with addition on more modalities.

FUSION OF fMRI, sMRI, AND EEG
The analysis of more than two brain imaging modalities collective-
ly, e.g., fMRI, sMRI, and EEG, can help identify interesting associa-
tions across brain structure and function. Performing M-CCA on 
multiple data sets can be more restrictive since we are requiring 
covariation of all three modalities, however, this is also informative 
since we find changes that are related across the three modalities. 
An interesting point to note is that M-CCA-based fusion allows for 
associations in local voxels as well as remotely located voxels, thus 
enabling discoveries of structural changes causing compensatory 
functional activation in distant, but connected, regions. 

Again, we decompose the data into sets of components and 
their corresponding modulation profiles across the subjects as 
shown in Figure  5. The data fusion scheme determines the linear 
transformation that maximizes the intersubject covariations 
across the three modalities using M-CCA, and based on these cova-
riations, the associations among the components across modalities 
are determined. As an example for multimodality fusion using 
M-CCA, consider the fusion of three brain imaging modalities: 
fMRI, sMRI, and EEG. The MRI and EEG data are acquired from 
36 subjects (22 healthy controls and 14 schizophrenia patients). 
The fMRI and EEG data were collected while the subjects per-
formed an auditory oddball (AOD) task that required them to press 
a button when they detect a particular infrequent sound among 
three kinds of auditory stimuli. Details of the task design and the 
participants are given in [33]. The data was preprocessed and fea-
tures were obtained as described in the section “Medical Imaging 
Modalities and Feature Generation.” EEG features, or ERPs, are 
calculated from the midline central position (Cz) because it 
appeared to be the best single channel to detect both anterior and 
posterior sources for the given task. 

We perform CCA on the dimension-reduced fMRI, sMRI, and 
ERP data to estimate 15 sets of components that contain interest-
ing associations across the modalities. The results identify changes 
in the motor and temporal areas associated with the N2/P3 com-
plex in the ERP (the EEG feature) as shown in Figure  6, areas that 
have been also previously noted as affected in schizophrenia. On 
examining the intersubject modulation in conjunction with the 
spatial and temporal components, the results imply that subjects 

Auditory Sensorimotor

GM

[FIG4] Joint components estimated by jICA corresponding to 
common profile demonstrating significant difference between 
patients and controls. The activation maps are scaled to Z values 
and thresholded at Z5 3.5.
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[FIG5] Data model for fusion of brain structure and function.
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with schizophrenia have less functional activity and less GM in the 
areas detected in this component and also a part of the ERP 
response appeared to be affected. Note that in the section 
“Application of CCA to Fusion of Two Modalities,” the sensorimo-
tor task showed an increase in motor activity for patients with 
schizophrenia, while the current result from an auditory oddball 
task shows a decrease in motor activity. The change in direction is 
likely due to the significant attentional component in the auditory 
oddball task. In contrast, the sensorimotor task is predictable, and 
increase in motor activity in patients performing similar tasks, 
have been noticed in neuroimaging literature. 

We also perform CCA-based fusion on the fMRI and sMRI data 
sets while excluding the EEG data. Comparing the results of the 
three-way analysis with those from the two-way analysis (results 
not shown), we find that for both experiments the areas detected 
in the fMRI and sMRI component are very similar for the compo-
nent that showed significant differences between the two groups, 
with the two-way analysis showing some areas of deactivation. 
Additionally, we note that the statistical significance of the differ-
ence between healthy controls and patients increased significantly 
with the use of three modalities in the analysis as compared to two 
modalities (Table 1) confirming the expectation that increased 
number of modalities do help identify more discriminative fea-
tures increasing the overall sensitivity of the analysis. Also, if the 
tests are corrected for Type-I errors using the Bonferroni correc-
tion, the significance threshold would be 0.003 and we can see in 
Table 1 that the results of the three modality fusion satisfy this 
threshold for at least two modalities while the two modality fusion 
results do not pass the threshold. Also, note that the Bonferroni 
correction may be too conservative and instead a less conservative 
false discovery rate threshold can also be used to check the signifi-
cance of the results. 

In the previous sections, we have presented the use of CCA and 
M-CCA for the fusion of data from different modalities. Next, we 
present a related but different framework for the use of M-CCA to 
perform group study of data from the same modality. 

MULTISUBJECT DATA ANALYSIS
In biomedical applications, it is common to study data from a 
number of subjects under identical experimental conditions and to 
make inferences based on group analysis—simply looking for 
occurrences that can be said to be true for the group. In this sec-
tion, we present the M-CCA based group analysis method for mul-
tisubject fMRI data analysis introduced in [19] and highlight one 
of the key results from the paper along with a comparison with the 
group ICA analysis technique. 

GENERATIVE MODEL AND 
M-CCA FOR GROUP ANALYSIS
For a group of K  data sets, each data set Xk5 3xk

112, xk
122, c, xk

1N2 4T,
k5 1, 2, c, K  contains linear mixtures of N  sources given in 
the source vector Sk5 3sk

112, sk
122, c, sk

1N2 4T, mixed by a nonsingu-
lar matrix, Ak, i.e., 

Xk5 AkSk,  (5)

where Xk, Sk [ RN3Q form the mixture data set and source data 
set respectively, Ak [ RN3N  is a nonsingular square matrix. 
Note that the mixture data set for multisubject BSS is the whole 
multidimensional data set and is different from the feature data 
sets used in the previous sections for data fusion. Sources are 
uncorrelated within each data set and have zero mean and unit 
variance, i.e., E5Sk6 5 0, k5 1, 2, c, K and E5SkSk

T6 5 I,
k5 1, 2, c, K  where I is the identity matrix. Sources from 
any pair of data sets k 2 l; k, l [ 51, 2, c, K6  have nonzero 
correlation only on their corresponding indices. Without loss of 
generality, we assume that the magnitude of correlation between 
corresponding sources are in nondecreasing order, i.e., 
rk, l
112 $ rk, l

122, c, $ rk, l
1N2, where rk, l

1i2 5 E5sk
1i2 1sl

1i2 2T6.
This assumed correlation pattern for latent sources in the 

generative model can be effectively used to construct a multi-
subject separation scheme using M-CCA , which is shown in 
Figure 1(b). In this scheme, the group of sources that have the 
maximal between-set correlation values are first extracted 
from the data sets. By removing the estimated sources from 
the data sets and repeating the correlation maximization 

[TABLE 1] COMPARISON OF t-TESTS FOR THREE MODALITY 
(fMRI, sMRI, AND EEG) VERSUS TWO MODALITY (fMRI AND 
SMRI) ANALYSES FOR COMPONENT. THE t-TESTS ARE 
PERFORMED ON THE LOADINGS FROM THE MODULATION 
PROFILES OF HEALTHY AND SCHIZOPHRENIC SUBJECTS.

MODALITIES THREE MODALITIES TWO MODALITIES 

t a t a

fMRI 3.45 0.002 2.17 0.038 
SMRI 2.86 0.001 2.20 0.034 
EEG 3.61 0.007 – – 

[FIG6] Set of associated components estimated by M-CCA 
that showed significantly different loading for patients 
versus controls.
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 procedure, subsequent proce-
dures can extract groups of 
corresponding sources from 
each data set in decreasing 
order of between-set correla-
tion values. This procedure is 
described in the section 
“M-CCA,” however, in this case 
the canonical variates will not 
be defined as in (3) and instead they will be defined as 
Sk5WkXk, for k5 1, 2, c, K  and rk, l

1i2 5 E5sk
1i2 1sl

1i2 2T6.
In [19], the study of source separability conditions based on 

a flexible generative model shows that the method can be used 
to achieve successful source separation under mild conditions. 
The conditions depend on the chosen cost function, e.g., we 
show that J 1rk, l 2 5 aK

k, l51
|rk, l|

2 is a practical choice for the 
cost and that it leads to robust separation performance and a 
separability condition that is easily satisfied especially when 
the number of observations increases. The superior perfor-

mance of M-CCA is shown for 
group source separation for 
large number of data sets, 
robustness to outliers, and 
robustness to complex-valued 
data distributions, when com-
pared with data-driven methods 
that assume a non-Gaussian 
model [19]. 

COMPARISON WITH OTHER APPROACHES
Group ICA achieves source separation of multiple data sets by 
first reducing the dimensionality of data from each subject, 
followed by reducing the these reduced data sets to a common 
subspace, then performing ICA on this common subspace, and 
finally back-reconstructing the subject-specific source esti-
mates. The data reduction steps used to obtain the common 
subspace reduces the amount of subject variability in the esti-
mated subject-specific source estimates. M-CCA, on the other 
hand, performs BSS after a subject-level data reduction stage 
and does not work on a common subspace. This allows M-CCA 
to retain much of the intersubject variability. Tensorial ICA 
also specifies a common signal subspace model that is similar 
to that of group ICA. Additionally, in tensorial ICA, each group 
of the corresponding mixing vectors is represented by a com-
mon mixing vector associated with a cross-subject variation 
vector using a rank-one approximation. In this way, the group 
data sets are decomposed into a three-way tensor product of 
the common sources, common mixing vectors, and the asso-
ciated cross-subject variation vectors. IVA uses a mutual 
information-based formulation to perform source separation 
across multiple data sets; however, the algorithmic develop-
ment of the method involves the simplifying assumption that 
the estimated sources are uncorrelated across data sets, which 
is an unrealistic assumption for many applications including 
analysis of biomedical data sets. For a more detailed compari-
son of these group analysis techniques, refer to [19], and for 
review of ICA-based multisubject analysis methods in fMRI, 
refer to [15]. 

APPLICATION OF M-CCA TO 
MULTISUBJECT DATA ANALYSIS
The multiple data set extension of CCA, M-CCA reveals relation-
ship among the hidden factors in multiple data sets. In this sec-
tion, we show how M-CCA can be used for source separation across 
multiple data sets. 

MULTISUBJECT ANALYSIS OF fMRI 
Twelve right-handed participants with normal vision—six 
females, six males, average age 30 years—participated in the 
study. Subjects performed a visuomotor task involving two 
identical but spatially offset, periodic, visual stimulus, shifted 
by 20 s from one another. A total of 12 data sets are jointly 
analyzed. Each data set is preprocessed according to typical 
fMRI analysis procedures consisting of slice-timing 

[FIG7] Estimated mean activation maps (top left), source 
correlation between subjects (top), and time course (bottom) of 
the default mode by (a) M-CCA and (b) Group ICA. The right 
(green circle) and left (red block) visuomotor task paradigm is 
overlaid onto the estimated time courses for reference.
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 correction, image registration, 
motion correction, smooth-
ing, whitening, and dimension 
reduction. Thirty-two normal-
ized principal components 
(PCs) are retained for each 
data set and M-CCA is applied 
to the 12 sets of retained PCs. The optimal number of PCs are 
selected using an information theoretic criterion with cor-
rection for sample dependence; for implementation details 
refer to [19]. 

We present a source of interest from the M-CCA and 
group ICA estimation results. The M-CCA result shows acti-
vation at inferior parietal lobule, posterior cingulate, and 
medial frontal gyrus—this set of regions is called the “default 
mode” network that tends to be less active during the perfor-
mance of a task [34]—as well as deactivation in motor, tem-
poral, and visual regions. The group ICA result, on the other 
hand, focuses on the default mode activity. The estimated 
mean activation maps over all data sets, image of the cross-
subject source correlation matrices, and the mean time 
course are displayed in Figure 7. The right- and left-side 
visuomotor task paradigm is overlaid onto the estimated time 
courses for reference. 

The estimated sources by M-CCA and group ICA are shown 
in Figure 7. It is observed that the spatial map estimated by 
M-CCA shows higher cross-subject correlation level than 
group ICA. The time courses of default mode estimated by 
M-CCA and group ICA both show expected negative correla-
tion against the onset of the visuomotor task. Furthermore, a 
multiple linear regression is performed on the estimated time 
course with the right (R) and left (L) visuomotor paradigm 
regressors. It is observed that time course estimated by 
M-CCA has more significant regression coefficients with the 
task paradigms, i.e., the values are for M-CCA (R): –0.52 with 
estimated confidence interval (CI): [20.38, 20.65] and (L): 
20.87 CI: [20.74, 21.01]; group ICA (R): 20.45 CI: [20.28,
20.62] and (L) 20.60 CI: [20.43, 20.77]. Hence, M-CCA 
achieves higher consistency on spatial activation region and 
also the time courses show a higher correlation with the task 
paradigm. The agreement of the spatial and temporal features 
suggests that default mode network is a common feature 
across all subjects that is driven by both the left and right 
visuomotor task. 

DISCUSSION
We have presented two CCA-based approaches for data fusion 
and group analysis of biomedical imaging data and demon-
strated their utility on fMRI, sMRI, and EEG data. The results 
show that CCA and M-CCA are powerful tools that naturally 
allow the analysis of multiple data sets. The data fusion and 
group analysis methods presented are completely data driven, 
and use simple linear mixing models to decompose the data 
into their latent components. Since CCA and M-CCA are based 
on second-order statistics they provide a relatively less con-

strained solution as compared 
to methods based on higher-
order statistics such as ICA. 
While this can be advanta-
geous, the flexibility also tends 
to lead to solutions that are 
less sparse than those obtained 

using assumptions of non-Gaussianity—in particular super-
Gaussianity—at times making the results more difficult to 
interpret. Thus, it is important to note that both approaches 
provide complementary perspectives, and hence it is beneficial 
to study the data using different analysis techniques. 

Though, in general, the tendency in data analysis is to try 
to minimize the assumptions on the nature of data, certain 
assumptions may be suited to the data being studied, and 
strong assumptions such as independence or sparsity might 
help improve robustness of the solutions. Thus, the perfor-
mance of a method should be judged on the overall proper-
ties rather than a simple optimality criterion, while taking 
the underlying assumptions into account. Especially in the 
case of the study of brain structure and function, since the 
ground truth is seldom available, the assumptions in most 
cases cannot be verified. Thus, fully exploiting the comple-
mentary nature of different methods becomes especially 
important, as now noted in most neuroimaging literature. As 
we demonstrate in this article, CCA- and M-CCA-based meth-
ods provide attractive solutions to data fusion and group 
analysis, and their true power might be realized when they 
are used in conjunction with other methods that are comple-
mentary in nature. Also, their extensions to incorporate spar-
sity and higher-order statistical information can help improve 
their utility. 
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M
o d e l i n g 
topology 
in medi-
cal image 
process-

ing algorithms has emerged 
as a powerful technique for 
computing structural rep-
resentations that are con-
sistent with the underlying 
anatomy. When applied to 
high resolution images of 
the brain, these methods 
have proven to be extreme-
ly beneficial to neuroscien-
tific studies in generating mathematical representations of the 
cerebral cortex and other brain structures, improving the 
analysis and visualization of functional activity, and allowing 
for group comparisons of brain geometry. Topological proper-
ties help model the global connectivity of structures without 
placing a bias on shape. In addition to providing anatomical 
consistency, topology-preserving algorithms also exhibit an 
improved robustness to noise. We provide an introduction to 
the main concepts in digital topology on which these algo-
rithms are based and review their use in the segmentation of 
magnetic resonance (MR) brain images.

BACKGROUND AND SIGNIFICANCE
With the advent of high resolution MR imaging technologies, 
the development of algorithms to segment and reconstruct the 

human brain has been an 
important area of interest 
for both the medical image 
processing and neurosci-
entific communities. In 
particular, the reconstruc-
tion of the cerebral cortex 
from MR images allows 
neuroscientific research-
ers to better understand 
the structure and function 
of the brain in health and 
disease [1], [2]. The cere-
bral cortex is a highly con-
voluted layer of gray 

matter tissue within the human brain that is known to be 
responsible for motor, sensation, and cognitive processing. 
Because the cortex is a very thin structure with complex fold-
ing patterns, accurate reconstruction is a challenging problem. 
Furthermore, the ability of any cortical representation to be 
“flattened” or “unfolded” is paramount to both visualization of 
functional activity mapped to the cortex, as well as generating 
a standardized space for performing group comparisons [3]. 
Such a representation must possess a topology that is consis-
tent with the known anatomy. 

The inner and outer cortices, when connected across the 
brain stem, are known to each be topologically equivalent to a 
sphere [3]. This is illustrated in Figure 1(a), where the left side 
shows a coronal section of an MR brain image with the inner 
and outer cortices highlighted in yellow and the right side 
shows a cross section of two concentric spheres. This topologi-
cal equivalence implies that any cortical surface may be 
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deformed into a sphere without the need to remove or add dis-
connected pieces, or make tears within the surface. Figure 1(b) 
shows a topologically correct reconstruction of the cerebral cor-
tex where sulcal regions have been labeled with different colors. 
Such a reconstruction can be unfolded, as shown in Figure 1(c), 
exposing the buried sulcal regions and allowing for better visu-
alization of functional activity. Unfolded cortical surfaces may 
also be used to form a standardized coordinate system for group 
analyses [3]. Reconstruction approaches that ignore the issue of 
topology may result in cortices composed of multiple pieces or 
surfaces that possess handles, which are known to be anatomi-
cally invalid and are shown in Figure 1(d). 

Three approaches are possible for obtaining segmentations of 
a single object with a desired topology: 1) topology correction 
approaches, 2) topology-preserving segmentation approaches, 
and 3) hybrid approaches that combine both topology correction 
and topology-preserving segmentation. Topology correction 
generates a cortical reconstruction using standard methods 
without consideration of topology, and then applies a correction 
algorithm. Early work in performing topology correction of cor-
tical reconstructions involved laborious amounts of manual 
editing to ensure that the cortical surface was a single connected 
piece with no handles [3], [1]. This eventually led to the develop-
ment of a number of automated topology correction methods 
(see the section “Topology Correction”). Topology constraints 
may also be incorporated directly into the segmentation algo-
rithm. To obtain the desired topology, the algorithm is initial-
ized from a template object with the correct topology and then 
applies topology-preserving deformations. Parametric deform-
able surface models were commonly used for this purpose 
because they are inherently topology-preserving, but topology-
preserving level set and region growing methods have also been 
proposed (see the sections “Voxel-Based Methods” and 
“Deformable Models”). These methods may suffer, however, from 
sensitivity to initialization and convergence to local optima, 
leading into inaccurate results. Hybrid approaches addressed 
this sensitivity by combining topology correction with topology-
preserving deformable models. For cortical surface reconstruc-
tions, the most common approach utilizes a topologically 
corrected representation of the white matter surface that is then 
used as an initialization for a topology-preserving deformable 
model [1], [2]. 

Enforcing topology preservation or correction is nontrivial. 
Since topology is known to be a global property, it can poten-
tially be extremely computationally expensive to monitor. By 
employing fundamental concepts from the field of digital topol-
ogy, topological changes can be efficiently evaluated using only 
local computations [4] (see the section “Digital Topology”). 
Thus, although topology-preserving algorithms do require some 
additional computational overhead when compared to its tradi-
tional counterpart, the additional expense is typically small. 

Although reconstruction of the cerebral cortex was the origi-
nal motivation for many of the image processing methods 
involving topological models, nearly all anatomical structures in 
the healthy brain and the human body can be assumed to have a 
fixed topology. Standard brain tissue segmentation techniques 
can often result in a single pixel labeled as gray matter in the 
middle of white matter even though it is anatomically known 
that such configurations cannot exist. Local smoothing priors 
such as Markov random fields [5] can penalize against such con-
figurations but can not completely eliminate them without sac-
rificing accuracy due to oversmoothing. Topological modeling, 
on the other hand, has the ability to explicitly prevent such con-
figurations from occurring. Validation experiments have shown 
that algorithms incorporating topological constraints have 
increased robustness to noise over standard approaches without 
loss of accuracy [6], [7]. 

Topology-preserving techniques have had a tremendous 
impact on the neuroimaging and neuroscientific communities 
by enabling quantitative measures to be derived, particularly 
from the cortex. These measures, such as cortical thickness, 
have been shown to be useful in characterizing aging processes 
and diseases (cf. [8]). Research in this area has also spawned 
new theoretical developments in both digital topology and 
mathematics [9]. The Web site of the cortical reconstruction 
software package FreeSurfer [1] alone lists over 70 methodologi-
cal and neuroscientific publications based on its tools. In the 
following, we introduce the reader to the basic digital topology 
concepts utilized in the development and implementation of 
topologically constrained image processing algorithms. An over-
view of these methods and their application to human brain 
mapping is then provided. We focus primarily on three-dimen-
sional (3-D) cases, although some two-dimensional (2-D) exam-
ples are provided for ease of visualization. 

[FIG1] Topology in human brain mapping: (a) A 2-D view illustrating topological equivalence of the cerebral cortex and the sphere, 
(b) reconstructed cortical surface with sulcal regions assigned to color labels, (c) unfolded cortical surface with each hemisphere 
mapped to a spherical coordinate system, and (d) magnified view of a cortical surface without topology constraints.

(a) (b) (c) (d)

Handles
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BASIC CONCEPTS AND METHODS
In this section, we define basic terminology and introduce 
important concepts for constraining topology in image pro-
cessing methods. A critical consequence of results from digital 
topology is that changes in topology can be detected using 
local computations. 

TOPOLOGY IN CONTINUOUS DOMAINS
Topology is a vast domain of mathematics, classically considered 
to be founded by Euler in 1736 with his solution to the 
Konigsberg bridge problem [10]. Since then, the subject has per-
meated many aspects of applied and abstract mathematical theory. 
Topology is defined as the spatial property retained by an object 
under any continuous geometric transformation, including bend-
ing, twisting, stretching, but not including tearing or joining. 
When considering a 3-D object bounded by a closed surface, the 
surface can move in any way that does not create a cut or a self-
intersection in the surface. This means, for instance, that the cor-
tical surface of any healthy brain can be deformed into a sphere or 
into any other cortical surface without altering topology. 

The topology of a set of 3-D objects is fully characterized by 
the number of disjoint closed simple surfaces c, representing 
the boundaries of the objects, as well as the number of closed 
loops or handles in each object, called the genus g of a surface. 
These two numbers can be used to formulate the Euler charac-
teristic x. A more practical equation for the Euler characteristic 
can also be computed for any mesh parameterization of the sur-
faces as a function of the number of vertices V, edges E, and 
faces F [11], [12] 

x5 2c2 2g5 V2 E1 F. (1)

Spherical topology refers to the topology of the sphere, which 
is the simplest possible case where c5 1, g5 0, and x5 2. 
Figure 2 shows an example of a torus, where c5 1, g5 1, and 
x5 0. The torus can be digitally represented as a surface mesh 
[Figure 2(b)]. The same value of zero would be derived regard-
less of whether the mesh shown in Figure 2 was refined, or if 
an alternative tessellation had been used, such as a triangular 
or simplex mesh. The torus can also be represented as a binary 
3-D image, shown in Figure 2(c). An important difference 
between these two digital representations is that the vertices of 
the surface may exist in a continuous space, while the pixels of 
the image exist on a discrete grid. 

Topology is a global property in that the overall topology of 
an object can not be determined from only a portion of the 
object. However, it is possible to determine whether the topolo-
gy of an object has changed based on local computations. A geo-
metric transformation applied to an object will preserve the 
object’s topology if and only if the transformation is a homeo-
morphism, a continuous function with a continuous inverse 
defined on the original and deformed objects. In Euclidean 
spaces up to dimension three, homeomorphisms are also diffeo-
morphisms, invertible functions for which both the function 
and its inverse are differentiable. Diffeomorphisms are more 

convenient to satisfy mathematically in constructing a topology-
preserving transformation since they may be enforced by ensur-
ing that the Jacobian of the transformation exists and is strictly 
nonzero everywhere within the object space [13]. 

DIGITAL TOPOLOGY
Although the definitions above apply to surface representa-
tions and transformations within the continuous domain, 
their extension to the discretely sampled spaces of digital 
images is nontrivial. A continuously diffeomorphic transfor-
mation may not preserve topology in the digital space. For 
example, depending on  connectivity and sampling 
 assumptions, a simple rotation or scaling could cause a thin 
digital object to break into multiple parts [14]. 

Digital topology, which was pioneered by Azriel Rosenfeld in 
the latter half of the 20th century, bridges the gap between con-
tinuous and digital spaces and offers fundamental tools for han-
dling the topological properties of digital images [4]. At the core 
of image processing methods utilizing digital topology is the 
notion of a simple point, which is a pixel that can be freely labeled 
as either inside or outside an object without changing the topolo-
gy of the object. Consider an object represented by a binary digital 
image. By definition, any transformation that flips the label of one 
pixel within the binary image preserves topology if and only if that 
pixel is a simple point. Figures 3 and 4 show examples of simple 
and nonsimple points in 2-D and 3-D. Where in the continuous 
domain diffeomorphic conditions could be used to enforce topolo-
gy-preserving transformations, these are are replaced by consider-
ations of simple points in the digital domain. 

Simple points can be identified in a number of ways by con-
sidering a local neighborhood of the point. An elegant and effi-
cient approach involves the notions of geodesic neighborhoods 
and topological numbers [15]. The geodesic neighborhood 
Nn

k 1x, X 2  of a point x in an object region X  is the set of pixels 
with the same binary label for which there is a n-connected path 
in X  of length no greater than k between the neighbor and x.
The neighborhood depends on a choice of connectivity, which 
determines how pixels are connected inside or outside the object. 
In 2-D, 4-connectivity implies that only horizontal and vertical 

(a)

(b) (c)

[FIG2] (a) Torus object, (b) torus represented as a rectangular 
surface mesh, and (c) torus represented as a 3-D binary image 
volume, with orthogonal cross sections shown.
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neighbors can be connected, while 8-connectivity includes diago-
nal neighbors. The 3-D connectivities are shown in Figure 5(a), 
where the red circles indicate six-connectivity, the red and blue 
circles combined form 18-connectivity, and all circles surround-
ing the center point form 26-connectivity. Connectivities work in 
complementary pairs to avoid gaps (regions neither inside nor 
outside the object) or overlaps (regions both inside and outside 
the object) in the continuous representation of the object. For 
example in Figure 3, if the object and background were both 
8-connected, they would overlap one another. Connectivity 
assumptions may be either 4/8 (object/background) or 8/4 in 
2-D, and 6/18, 6/26, 18/6, or 26/6 in 3-D. 

The topological numbers of x relative to the set X  are the 
numbers of connected components within the geodesic 

 neighborhoods defined by the choice of a connectivity rule. In 
two dimensions, the topological numbers Tn are given by 

T4 1x, X 2 5 C4 1N4
2 1x, X 22

T8 1x, X 2 5 C8 1N 8
1 1x, X 22 ,

where Cn 1X 2  denotes the number of n-connected components 
in X. In three dimensions, we have 

T6 1x, X 2 5 C6 1N6
2 1x, X 22

T61 1x, X 2 5 C6 1N6
3 1x, X 22

T18 1x, X 2 5 C18 1N18
2 1x, X 22

T26 1x, X 2 5 C26 1N 26
1 1x, X 22 .

There are two topological numbers in the 3-D  case for 6-con-
nectivity, following the convention introduced in  [15], wherein 
the notation “6+” implies 6-connectivity whose dual connectivi-
ty is 18, while the notation “6” implies 6-connectivity whose 
dual connectivity is 26. This highlights the fact that connectivity 
fundamentally works in pairs, and so the topological number for 
6-connectivity must be computed differently depending on 
whether the associated connectivity rule is 18 or 26. 

The topological numbers allow straightforward characteriza-
tion of a simple point. It is proven in [15] that a point x is sim-
ple if and only if Tn 1x, X 2 5 1 and Tn 1x, X 2 5 1, where 1n, n 2  is 
a pair of compatible connectivities and X  represents the back-
ground object. In other words, a point is simple if there is exact-
ly one connected inside region and one connected outside 
region in the neighborhood of the point. A straightforward com-
putation of topological numbers can be implemented by count-
ing the number of connected components within specific 
geodesic neighborhoods. A more efficient approach is to build a 
look-up table to store the topological numbers for each possible 
configuration. This approach can be memory intensive for the 
3-D  case since the table could have 226 entries. Another 
approach based on binary decision diagrams avoids the use of 
large look-up tables by performing an efficient series of tests 
[16]. In Figure 3, T45 2 for the object and T 85 2 for the 
 background, implying the point is not simple. However, under 
the reverse connectivity assumption, T85 T 45 1, and the point 
is simple. In Figure 5(b), where black circles are the object and 
blue circles are the background, T65 2 and T 265 1 so the 
point is not simple under 6/26 connectivity, but for 6/18 con-
nectivity, T61 5 T185 1 and the point is simple. 

TOPOLOGY-PRESERVING ALGORITHMS
In this section, we provide an overview of topology-preserving 
models, topology correction, and other recent approaches in the 
topologically constrained processing of brain images. 

VOXEL-BASED METHODS
The concept of the simple point immediately lends itself to vox-
el-based segmentation approaches involving a region growing 
or similar process that begins with an initial structure with the 

[FIG3] Illustration of a nonsimple point: if the nonsimple point 
changes labels, then the two 4-connected objects (left) merge to 
form a single 4-connected object (right). 

Nonsimple Point
(a) (b)

(a) (b)

P P

[FIG4] (a) 3-D illustration of a simple point and (b) multiobject 
generalization of a simple point (see the section "Multiobject 
Topology").

(a) (b)

[FIG5] (a) Connectivity in 3-D and (b) an example of computing 
topological numbers.
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desired topology, and expands that structure in a topology-pre-
serving fashion until it segments the desired anatomy. Mangin 
et al. were among the first to apply such an approach in seg-
menting multiple structures within brain images [17]. Their 
homotopic (i.e., topology-preserving) deformable region utilized 
a combination of regularization based on a Gibbs energy func-
tion and conditional morphological filters to extract the union 
of gray matter and cerebrospinal fluid in the brain, which was 
assumed to have the topology of a sphere with a single cavity. A 
homotopic skeletonization was then applied to extract sulcal 
regions within the cerebral cortex. In [6], topology-preserving 
fast marching algorithms were implemented in combination 
with an intensity-based clustering algorithm to segment multi-
ple regions of the brain with any desired topology. The topology 
of each region was dictated by a topology template, which pro-
vides a simple representation of the brain structure. Vascular 
segmentation in both the brain and other anatomical regions 
have also been performed using topology-preserving region 
growing approaches [18] under the assumption that vessels are 
simply connected, and do not possess loops or cavities. In [19], a 
graph cuts segmentation algorithm was proposed that employed 
a topology-preserving prior. This formulation takes advantage of 
the well-known computational efficiency and convergence prop-
erties of discrete graph-based segmentation algorithms. 

DEFORMABLE MODELS
Deformable models are object-delineating curves or surfaces 
that move within 2-D or 3-D digital images under the influ-
ence of both internal and external forces and user defined con-
straints [20]. These algorithms have been at the heart of one 
of the most active and successful research areas in edge detec-
tion, image segmentation, shape modeling, and visual track-
ing. Deformable models are broadly classified as either 
parametric deformable models or geometric deformable mod-
els according to their representation and implementation. In 
particular, parametric deformable models are represented 
explicitly as parameterized curved or surfaces in a Lagrangian 
framework. Geometric deformable models, on the other hand, 
are represented implicitly as level sets of higher-dimensional, 
scalar functions and evolve in an Eulerian fashion. 

Parametric deformable models are inherently topology pre-
serving because of their Lagrangian formulation. They are typi-
cally initialized as closed simple curves or surfaces and remain 

as such throughout their deformation. An advantage of these 
models is that they exist in the continuous domain and possess 
subvoxel accuracy. For these reasons, parametric deformable 
models have been used extensively in the reconstruction of the 
cortical surface [21], [1]. However, special care must be paid to 
preventing self-intersections during the evolution of the model. 
In [21], self-intersections were prevented using a self-proximity 
term within the energy function that assigned an increasingly 
higher cost as the faces of the surface approached each other. 

Geometric deformable models have several important 
advantages over parametric models. First, they are completely 
intrinsic and therefore are independent of the parameteriza-
tion of the evolving contour. In fact, the model is generally not 
parameterized until evolution of the level set function is com-
plete. Thus, there is no need to add or remove nodes from an 
initial parameterization or adjust the spacing of the nodes as 
in parametric models. Because parameterization is not 
required during evolution, self-intersections can easily be pre-
vented. Second, the intrinsic geometric properties of the con-
tour such as the unit normal vector and the curvature can be 
computed from the level set function in a straightfoward fash-
ion. This contrasts with the parametric case, where inaccura-
cies in the calculations of normals and curvature result from 
the discrete nature of the contour parameterization. 

Traditional geometric deformable models automatically 
change topology during evolution. This flexibility is a major 
advantage of geometric deformable models over parametric 
deformable models in many applications. To counter this 
advantage, methods to adaptively change contour topology 
have also been developed for parametric deformable models 
[20]. As we have described however, topological flexibility can 
also be a disadvantage, particular when the anatomy under 
study is known to be fixed. In [22], topology preservation was 
achieved by verifying that only simple points were allowed to 
change sign within the level set at each step of the evolution. 
This approach maintains the subpixel interpolation and bound-
ary regularization properties of geometric deformable models 
and is computationally much more efficient than parametric 
models. Figure 6 shows a 2-D example of segmenting bones 
using a geometric deformable model with and without topology 
constraints. Because of the proximity of the bones, the uncon-
strained model merges to form a single contour, while the 
topology-preserving approach maintains a clear separation. 

[FIG6] Level set segmentation of bone: (a) initialization, (b) standard geometric deformable model, and (c) topology-preserving 
geometric deformable model.

(a) (b) (c)
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[FIG8] Cortical surface reconstruction using a hybrid approach: (a) white matter isosurface after topology correction, (b) inner cortical 
surface, (c) central cortical surface, (d) outer cortical surface, and (e) crosssections of the latter three surfaces overlaid on the MR brain image.

(c) (d)(a) (b) (e)

If a surface representation is required from a geometric 
deformable model, an isosurface algorithm can be performed, 
such as the marching cubes technique [23]. The recovered 
surface is a geometric approximation that will possess the cor-
rect topology if the implicit surface is assumed to cross at 
most once through each edge between two neighboring points, 
and if the isosurface connectivity is consistent with the choice 
of digital connectivity on the grid [22]. Although the marching 
cubes reconstruction performs only a trilinear interpolation of 
space, more elaborate interpolation techniques may introduce 
small perturbations on the level set function that become 
topology artifacts, thereby severing the link between the con-
tinuous and digital representations. The other interpolation 
method that will preserve topological properties is the nearest 
neighbor interpolation, which represents each sample point 
inside the object as a voxel. 

TOPOLOGY CORRECTION
An alternative to topology-preserving segmentation approaches is 
to apply a segmentation approach that does not consider topology, 
and then automatically correct the resulting topology. Topology 
correction methods are often used in combination with topology-
preserving segmentation. The latter can suffer from convergence 
to local optima, particularly because the topology constraints will 
restrict the freedom of evolving a region or surface. An initializa-
tion with the proper topology close to the final structure of inter-
est is therefore quite desirable to improve the accuracy of the 
resulting delineation. Such hybrid methods are commonplace in 
the reconstruction of the cerebral cortex [1], [2]. 

Automated algorithms for topology correction typically oper-
ate on a binary volume extracted from the classification of the 

image data. In these approaches, the 
objective is to detect and remove topologi-
cal defects (disconnected pieces and han-
dles) from a segmentation with arbitrary 
topology, while effecting minimal chang-
es. Most methods first identify the largest 
connected component of the segmenta-
tion, and assume that this component 
should possess a spherical topology. The 
manner in which the final topology is 
enforced can be classified as 1) graph-
based analysis [24]–[26], 2) region-grow-
ing based [27]–[29], and 3) surface based 

[30], [31]. An approach also exists for correcting continuously 
valued object representations that may be obtained in probabi-
listic or fuzzy segmentation approaches [32]. This method 
ensures that all isolevels within the segmentation will have the 
appropriate topology. 

Graph-based techniques represent the connected components 
of an object as graphs that are then processed to identify and 
remove cycles, which correspond to handles. In [26], background 
and foreground connectivity graphs were generated by assigning 
each connected component within a two-dimensional slice to a 
vertex or node in the graph. Connections in the graph were 
formed based on whether adjacent slices shared a face within con-
tiguous voxels. The authors conjectured that the object’s surface 
had a spherical topology if both the foreground and background 
connectivity graphs were both trees. This conjecture was later 
mathematically proven to be true under mild conditions [33]. 
Figure 7 shows an example of isosurfaces computed from topo-
logically uncorrected and corrected segmentations of the inner 
cerebral cortex (i.e., the gray matter/white matter interface). 

Region-growing methods start from some initialization, which 
can be seed points [29], [28] or a bounding box [27], that grows 
in a topologically controlled fashion. Multiple objects can be 
simultaneously corrected in this fashion with each object assumed 
to be homeomorphic to a sphere [28]. Both region-growing and 
graph-based approaches operate on the digital image and require 
a subsequent isosurface generation if a surface is desired. On the 
other hand, surface-based approaches operate directly on the 
mesh representations. Surface correction can be accomplished by 
mapping the surface to a sphere, detecting the overlapping faces 
that occur from topological defects, and then retessellating those 
regions accordingly [31], [30]. Surface-based approaches are able 

(a) (b)

[FIG7] Isosurfaces computed from a segmentation of the inner cortex (a) before and 
(b) after topology correction with two magnified views of each to the right. (Images 
provided courtesy of David Shattuck.)
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to utilize information about the geometry of the reconstructed 
surface at the cost of greater computational expense. 

Figure 8 shows the result of a combination of topology cor-
rection and topology-preserving techniques to generate a nested 
surface representation of the cerebral cortex [2]. The brain imag-
es were initially segmented using an intensity-based classifier 
that does not constrain topology. This yields a white matter iso-
surface that is corrected with a graph-based correction technique, 
followed by refinements using a topology-preserving deformable 
model to reconstruct the inner, central, and outer cortical layers. 

MULTIOBJECT TOPOLOGY
Early work on topologically constrained segmentation of mul-
tiple objects focused exclusively on spherical topologies [17]. 
However, not all objects in the brain possess a spherical topol-
ogy. White matter, for example, because of its relationship with 
subcortical gray matter structures and the ventricles, should 
not be considered to have a spherical topology. An algorithm 
that performed simultaneous classification of multiple objects 
with any topology was later proposed [6]. However, these 
methods only preserved the topology of each object, leaving 
the topology of the union of any subset of objects to be 
 unconstrained. This is an important issue since the true anato-
my typically follows strict topological relationships in terms of 
how one structure is connected to another. In algorithms that 
preserve group topologies, neighboring structures in the anat-
omy must remain neighbors in the segmented image, and 
nonneighboring structures must stay separated. 

Nonlinear registration techniques (cf. [34]) that volumetri-
cally deform a labeled template image to the subject image and 
preserve topology using diffeomorphic transformations could 
be potentially be used for computing topologically constrained 
segmentations of multiple objects. However, care must be 
taken in that the diffeomorphism is enforced in a manner con-
sistent with the object representation. In [14] and [35], it is 
shown that standard diffeomorphic registration techniques 
will violate the topology of digital objects represented on a 
pixel or voxel grid, thereby requiring alternative criteria to 
preserve topology in volumetric deformations. 

In [7], topological constraints on both the structures and 
their groupings were used to encode continuity and relationships 
without biasing shape, resulting in a strictly homeomorphic seg-
mentation algorithm. The method employed a coarse statistical 
atlas of shape, and computed the segmentation of cortical and 
subcortical structures predominantly from the image and topo-
logical constraints. To preserve group topologies, a generaliza-
tion of the simple point, called the digital homeomorphism 
constraint [14] was employed. This constraint specifies for seg-
mented digital images with multiple labels, the criteria under 
which pixels may change labels without altering group topology. 
The constraint can be implemented by performing a simple point 
check on a limited combination of unions of labels [14]. An illus-
tration of the multiobject case is shown in Figure 4(b). 

Multiobject segmentation requires a template that 
describes the desired topology of each structure and how they 

are connected. In [7], this template was a geometrically sim-
plified representation of the brain and is shown in Figure 9(a). 
Gray matter is depicted in orange, cerebrospinal fluid in 
brown, white matter in white, and subcortical gray matter in 
yellow. One of the benefits of topology constraints is an 
increased robustness to noise. Figure 9(b)–(f) shows the 
results of applying an unconstrained segmentation procedure 
and the multiobject topology-preserving approach when 
applied to a simulated MR brain image with varying levels of 
noise. Equivalent amounts of regularization was employed in 

(a) (b) (c)

(d) (e) (f)

[FIG9] Multiobject segmentation: (a) topology template, (b) 
unconstrained segmentation of simulated image with 3% noise, 
(c) topology-preserving segmentation of simulated image with 
3% noise, (d) simulated image with 7% noise, (e) unconstrained 
segmentation with 7% noise, and (f) topology-preserving 
segmentation with 7% noise.

[FIG10] Multiobject segmentation with various constraints: 
(a) no topology constraints and no smoothing, (b) smoothing 
only, (c) single object topology constraints, and (d) multiobject 
topology constraints.

(a) (b)

(c) (d)
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[FIG12] (a)–(d) Genus-preserving level set model initialized as a set of 55 spheres and converging to a cortical surface. (Images provided 
courtesy of Florent Segonne.)

(a) (b) (c) (d)

each case. Even with increased noise, the topology-preserving 
approach exhibits no speckling within a structure and only 
loses accuracy around boundaries. 

In [36], a deformable model segmentation framework was 
described for multiple objects. Using a compact representation 
of level set functions for multiple objects, the resulting seg-
mentation has no overlap or vacuum, and is based on a com-
putationally efficient evolution scheme independent of the 
number of objects. Furthermore, the framework can be 
employed with or without topology control, which is enforced 
using the digital homeomorphism constraint. Figure 10 shows 
a 3-D visualization of a segmentation using this method of 
ventricles (red), caudate (green), and thalamus (blue) from an 
MR brain image. The caudate and thalamus are known to be in 
close proximity with one another but do not directly touch. 
Figure 10(a) has no topology constraint and no local smooth-
ing, Figure 10(b) employs only local smoothing, Figure 10(c) 
constrains the topology of each individual object, and Figure 
10(d) employs multiple object topology constraints. As can be 
seen, only the latter figure shows a correct reconstruction 
where the caudate and thalamus do not touch. 

ALTERNATIVE TOPOLOGY CONSTRAINTS
Although topology can be assumed to be fixed in healthy 
 anatomy, disease processes can often alter the topology. In the 
brain, lesions or tumors may occur that alter the connectivity 
between different structures, thereby rendering standard 

 topology-preserving methods unsuitable. There have been 
recent efforts in relaxing topology constraints to account for 
such situations. In [37], an approach was described for the seg-
mentation of brain images acquired from subjects with multiple 
sclerosis, which may cause lesions to form within the white 
matter. These lesions can possess any arbitrary topology. 
Topology constraints were applied to this problem by assuming 
that the union of white matter and lesions were fixed, but the 
lesions themselves were unconstrained. Figure 11 shows an 
example of this approach. 

There has been recent interest in enforcing topology con-
straints in alternative ways within deformable model approach-
es. In [38], rather than simply stopping the surface from 
evolving at the last step before a topology change, which can 
cause abrupt features to occur in the resulting curve or surface, 
a topology preserving geometric flow is proposed. This flow 
imposes a global regularity that allows the deformable model to 
evolve naturally while preventing topology changes from occur-
ring. Another technique allows geometric deformable models to 
be split and merge while arriving at a segmentation with approx-
imately the desired topology [39]. Such an approach allows for 
greater flexibility in the evolution and can potentially prevent 
convergence to suboptimal configurations. Figure 12 shows an 
example of this approach in reconstructing the inner cortex. 

DISCUSSION
Over the past two decades, great progress has been made in 
the research of digital topology in brain image analysis. 
Advances in the incorporation of topology constraints within 
medical image processing algorithms now allow computational-
ly efficient segmentations that are consistent with the underly-
ing anatomy. Modeling of topology complements commonly 
used models of local smoothness, such as Markov random fields, 
and statistical models of shape. We believe topological models 
will eventually reach similar levels of adoption into image pro-
cessing algorithms as those other models. Although we have 
attempted to provide a thorough overview of work in this area, 
many important contributions have been omitted because of 
space considerations. A continually updated Web page has been 
created by the authors that provides a more comprehensive list-
ing of related papers and resources, including publicly available 
software tools for performing topologically constrained image 
processing [40]. 

[FIG11] Example of semiconstrained topology in the 
segmentation of a multiple sclerosis brain image. Lesions 
shown in orange may possess any topology but other structures 
remain constrained. 
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I
mage reconstruction 
from projections is the 
field that lays the foun-
dations for computed 
tomography (CT). For 

several decades, the estab-
lished principles were 
applied not only to medical 
scanners in radiology and 
nuclear medicine but also 
to industrial scanning. 
When speaking of image 
reconstruction from pro-
jections, one is generally 
considering the problem of 
recovering some density function from measurements taken 
over straight lines, or the “line-integral model” for short. Image 
reconstruction can be performed by directly applying analytic 
formulas derived from the theory or by using general optimiza-
tion methods adapted to handling large linear systems. The lat-
ter techniques are referred to as iterative to distinguish them 
from the analytic (or direct) methods. This article considers 
only the analytic methods. The two-dimensional (2-D) recon-
struction problem (or classical tomography) refers to a density 
function in two dimensions with measurement lines lying in the 
plane, and the three-dimensional (3-D) problem considers 3-D 

density functions and lines 
with arbitrary orientations 
in space. The widely used 
term 3-D imaging is 
potentially confusing in 
this context, because there 
are some 3-D forms of 
image reconstruction that 
are mathematically equiv-
alent to performing 2-D 
reconstruction on a set of 
parallel contiguous planes. 
To emphasize the distinc-
tion between 2-D and 3-D 
reconstruction, the termi-

nology fully 3-D image reconstruction (or sometimes truly 3-D 
reconstruction) was introduced in the late 1980s when there 
seemed to be very little left to do in two dimensions but a rich 
unexplored 3-D theory to be developed. 

INTRODUCTION
Classical tomography was, for the most part, developed in a 
research boom in the 1970s, with many publications on both 
iterative and analytic methods. During this boom, it was 
noticed that J. Radon had already solved the reconstruction 
problem in 1917 and that his solution was equivalent to the 
independently developed filtered backprojection (FBP) method. 
Fanbeam reconstruction methods were developed at the end of 
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the 1970s, and interest then 
turned to the study of incom-
plete data problems, defined as 
problems where the line inte-
gral data are measured only for 
a proper subset of the set of 
lines crossing the object. These 
studies considered in particular 
truncated projections, limited-
angle data, and exterior data 
problems, finally concluding in the late 1980s that incomplete 
data reconstruction always implied some kind of approximation 
in the image unless significant a priori information had some-
how been incorporated. 

By 1990, 2-D analytic image reconstruction was considered a 
mature field. It had produced the famous FBP algorithm for 
reconstruction from complete data, and incomplete data recon-
struction would either require some good guesswork or would 
produce images with artifacts. There were few mathematical 
questions left to solve, and in the context of imaging in nuclear 
medicine at least, the line-integral model had already been 
largely superseded by more pertinent models that took into 
account physical effects in the scanners such as Compton scat-
tering, self-attenuation, and noise due to photon-counting sta-
tistics. In the X-ray CT field, where line-integral models 
remained relevant, the field had started to move into the mathe-
matically challenging (and fully 3-D) domain of cone-beam 
reconstruction that is still an active research area today. By the 
turn of the century, not only was 2-D reconstruction theory now 
completely understood, but after several decades of widespread 
application, the 2-D FBP algorithm was rapidly disappearing 
from the scene altogether, as medical and industrial scanners 
turned to fully 3-D reconstruction methods and/or iterative 
reconstruction schemes. 

Suddenly, in 2002, to the astonishment of the research com-
munity, the first examples appeared of accurate partial recon-
structions in two dimensions from incomplete data. These 
examples contradicted the understanding that incomplete data 
must inevitably generate artifacts throughout the image, and it 
then became important to distinguish between incomplete data 
(not all lines are measured) and insufficient data (not allowing 
accurate reconstruction in a given region of interest). The wide-
spread belief that 2-D tomography was “all or nothing” had been 
shattered, and new mathematical problems arose as well as the 
potential for exciting new applications. Reduced measurement 
requirements immediately suggested important dose reductions 
for some kinds of scans. Also, oversize specimens [such as very 
large patients that exceed the scanner field of view (FOV)] could 
be at least partially imaged. Limited angular scans that admit 
accurate partial reconstructions could have significant implica-
tions in industrial applications. 

In the new paradigm, only a subset of the full data was now 
needed to perform region-of-interest (ROI) reconstruction. This 
phenomenon had long since existed in some form in fully 3-D 
image reconstruction but was thought to be impossible in the 

2-D case. In the context of 3-D 
reconstruction, this new 2-D 
capability introduced the possi-
bility of some kinds of trans-
verse data truncation in 
cone-beam scanning. The chal-
lenge now was to reconcile 
these new 2-D partial data 
reconstructions with the exist-
ing theory of the 1980s and to 

establish clearly under which data measurement conditions ROI 
reconstruction could produce truly quantitative and reliable 
images. The purpose of this article is to describe some of these 
recent advances in accurate 2-D ROI reconstruction from partial 
data and to resolve the apparent contradictions between these 
new methods and previous understanding. 

20TH CENTURY STATE OF THE ART
We summarize here the state of the art of 2-D image recon-
struction theory at the turn of the century. More details on the 
concepts and mathematical demonstrations can be found in 
various textbooks [1]–[4] or review articles (e.g., [5]–[6]). 
Iterative reconstruction methods are not covered in this article; 
we refer the reader to [7]–[9] for an overview. 

FILTERED BACKPROJECTION
We first establish some notational conventions. The variables a
and b will always represent unit vectors in the plane, whose 
directions are given by f as follows: 

a5 1cosf, sinf2  (1)
b5 12sinf, cosf2 . (2)

The unknown density function will be denoted f 1x 2 5 f 1x1, x2 2 ,
and the projection data will be denoted p 1f, s 2 , which is the 
line integral of the density function along the line oriented at 
angle f from the horizontal (x1) axis and at a signed distance s
from the origin. So 

p 1f, s 2 5 3
`

2`

f 1ra1 sb 2dr for f [ 10, p 2 , s [ 12`, `2 ;
 (3)

see Figure 1. The one-dimensional function p 1f, # 2  is called 
the parallel projection of the function f  in the direction f. It is 
rare that a scanner would collect line-integral data in this form 
of parallel projections, with uniform angular increments and 
uniform detector increments. However, it is always possible to 
represent the 2-D measurements in this format, and some algo-
rithms start by interpolating the data into uniformly sampled 
parallel projections. When presented as a 2-D image, the data 
p 1f, s 2  is called the sinogram. Equation (3) expresses the 2-D 
Radon transform, which maps the density function f  to the 
sinogram p. In this article, we assume arbitrarily fine sampling 
of the variables s and f within their measured domains defined 
by the scanning geometry. 

IMAGE RECONSTRUCTION CAN BE 
PERFORMED BY DIRECTLY APPLYING 

ANALYTIC FORMULAS DERIVED 
FROM THE THEORY OR BY USING 

GENERAL OPTIMIZATION 
METHODS ADAPTED TO HANDLING 

LARGE LINEAR SYSTEMS.
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We note that the measure-
ment is supposed to be over 
an infinite line as indicated by 
the integration limits of 2`
to `.  Implicit in (3) is the 
idea that the density function 
is zero outside some bounded 
region, so the integration 
really only takes place over 
this region. For a medical 
scanner, the patient port of the scanner is a suitable such 
region. We will use the term scanner port to indicate the 
region inside which the object lies. The object support is the 
region of nonzero densities and is always within the scanner 
port. In reality, the limits of integration should be implicitly 
viewed as being over the scanner port rather than over the 
entire plane, and the linear measurements s as taken over 
the corresponding finite range. 

The FBP reconstruction formula is 

f 1x 2 5 3
p

0
pR 1f, s 2 |s5x #b df (4)

pR 1f, s 2 5 3
`

2`

p 1f, s r 2r 1s2 s r 2ds r, (5)

where r 1s 2  is the ideal ramp-
filter kernel whose Fourier 
transform is R 1s 2 5 |s|  so 
pR 1f, # 2  is called the ramp-fil-
tered  projection. The angular 
averaging to arrive at the recon-
structed image in (4) is called 
the backprojection step. Note 
again in (5) that the integration 
limits are specified as 12`, `2

to avoid being specific about the finite extent of the projections.
We use capital letters for Fourier transforms, so for example

R 1s 2 5 3
`

2`

r 1s 2e22pissds, r 1s 2 5 3
`

2`

R 1s 2e12pissds. (6)

The formula of (4)–(6) has been known since the 1970s and 
follows from the central section theorem (also called the 
Fourier-slice theorem). The central-section theorem indicates 
the information contained in each projection; it relates the 2-D 
Fourier transform of the scanned object, to the one- dimensional 
Fourier transform of the projection 

P 1f, s 2 5 F 12ssinf, scosf 2 . (7)

Each transformed projection corresponds to a line of values 
passing through the origin (a central section) in the 2-D 
Fourier domain. 

The FBP formula has also been shown to be equivalent to 
Radon’s inversion formula. It is important to note that (in the 
appropriate mathematical context) the Radon transform is one-
to-one [3]. This means that each (ideal, noise free) sinogram 
corresponds to a unique object. The FBP formula is an expres-
sion of the inverse transformation, taking sinograms back to 
density functions. 

It will turn out that Fourier transforms have much less 
importance in partial-data problems. The Hilbert transform 
will play the central role, which we anticipate by rewriting 
the  filtering part of the FBP formula. Note that R 1s 2 5
|s|5 11/2p 2 12pis 2 12isgns 2 , so we can express the ramp fil-
ter as a derivative composed with a Hilbert transform. Equation 
(5) can be replaced by 

pR 1f, s 2 5 1
2p

'
's

pH 1f, s 2  (8)

pH 1f, s 2 5 3
`

2`

p 1f, s r 2h 1s2 s r 2ds r where   h 1s 2 5 1
ps

 (9)

(recalling that in the Fourier domain, H 1s 2 52isgns). The 
Hilbert transform performs a convolution with the function 
1/ps, and the integral of (9) is to be taken in the Cauchy princi-
pal value sense. Also, recall that in practice the integration takes 
place over a finite interval. We call pH  the Hilbert transform of 
the parallel projection. 

[FIG1] Some notation and terminology: (a) The variables f and s
are illustrated, with the unit vectors a and b. (b) The scanner 
field of view (FOV) is shown in red, and this object support is the 
black boundary. All the (mathematical) action takes place within 
the scanner port (green). 
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integrated 
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SUDDENLY, IN 2002, TO THE 
ASTONISHMENT OF THE RESEARCH 
COMMUNITY, THE FIRST EXAMPLES 

APPEARED OF ACCURATE 
PARTIAL RECONSTRUCTIONS 
IN TWO DIMENSIONS FROM 

INCOMPLETE DATA. 
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Fanbeam projections also play a role in partial data prob-
lems. From a physical standpoint, fanbeam projections are 
more natural in the context of X-ray imaging, where the mea-
surement rays all diverge from a point that corresponds to the 
location of the anode of the X-ray source. We refer to this point 
as the fanbeam vertex, v. The vertex follows a trajectory around 
the object, typically a circle outside the scanner port, but we 
will be more general here and parameterize the movement of 
the vertex as v 1l 2 (which we shorten to vl), with a scalar vari-
able l [ L where L is an interval. We use g to represent 
fanbeam data: 

g 1vl, f 2 5 3
`

0
f 1vl 1 la 2dl for l [ L, f [ 10, 2p 2 , (10)

(where a is given by (1) as usual). The one-dimensional func-
tion g 1vl, # 2  is called a fanbeam projection. 

In both (3) and (10) we are representing line- integral mea-
surements. We note that the link between fanbeam and parallel 
projections can be expressed as 

p 1f, s 2 5 g 1vl, f 2 1 g 1vl, f1p 2 where   s5 vl # b
 (11)

but that one of the terms in the sum on the right hand side is 
zero because the vertex vl is taken to be outside the convex hull 
of the object support (or even outside the scanner port). The 
formula s5 vl # 12sinf, cosf2  expresses the fact that the ver-
tex vl lies on the line 1f, s 2 .

For a circular trajectory of the vertex, vl 5 12Rv cosl,
2Rv sinl 2  with vertex radius Rv, the FBP scheme of (4) and (5) 
can be reformulated into a convenient fanbeam FBP formula 
(e.g., [4] or [6]). This formula has been the basis of reconstruc-
tion algorithms on virtually all CT scanners during the last two 
decades of the 20th century 

f 1x 2 5 1
23

2p

0

1

|| x2 vl ||
2
3 g1 1vl, f 2 4 `

f5arg1x2vl2
dl (12)

g1 1vl, f253
l1p/2

l2p/2
Rv cos 1f r2l2g 1vl, f r 2r 1sin 1f2f r 22 df r.

 (13)

In (12), the integration limits of 10, 2p 2  mean that the fanbeam 
vertex performs a full 3608 scan. The factor of 1/2 in front of this 
integral compensates for the fact that each line intersecting the 
scanner FOV is measured twice during the scan. The shortest 
scan that allows each line to be measured at least once is the 
well-known shortscan equal to “1808 plus the fan angle” where 
the “fan angle” refers to the aperture of the FOV as seen from 
the vertex. In the shortscan reconstruction formula, the factor 
of 1/2 is replaced by a weight function to suitably balance the 
subset of lines that are measured twice in a shortscan [10]. 

An important observation from (4) and (5) [or equivalently 
from (12) and (13)] should be noted. First, the left-hand side 

indicates the outcome of the reconstruction at a single arbitrary 
point x (arbitrary but inside the scanner port). Now a study of 
the operations on the right hand side shows that all values of the 
sinogram (or of the measured fanbeam projections) are used in 
the reconstruction formula because the ramp kernel r 1s 2  is 
known to be nonzero almost everywhere. Figure 2  provides a 
visual description of this fact (for the case of parallel projections). 
At each point in the reconstructed image, all non zero elements of 
the sinogram make a nonzero contribution to reconstruction. 
This property of Radon’s inversion formula strongly suggests that 
any missing data will affect the whole image, independent of the 
algorithm used for reconstruction. The effects of missing data and 
how to compensate in practice depend on which data are missing. 
Considerable effort has gone into understanding the nature of the 
various incomplete data situations. 

INCOMPLETE DATA
There is a large literature on incomplete data problems in clas-
sical tomography, mainly from the 1980s (e.g., [11]–[51]). There 
are two main types of incomplete data: truncated projections 
and limited-angle projections. A third category is exterior data, 
where the internal part of the projections are unavailable; this 
situation looks like a version of truncated projections, but actu-
ally falls into the category of limited-angle problems. We discuss 
these three situations in turn. 

We say that a projection p 1f, # 2  is complete (nontruncated) 
if for all s, p 1f, s 2  is either measured or known to be zero. 
Amongst the incomplete projections, truncated projections 
have the unmeasured lines at the extremities of the nonzero 
values. In terms of the FBP algorithm, the main difficulty with 

p (φ, ·)

pR(φ, s)

x

φ

(or pH(φ, s))

[FIG2] Schematic of the FBP reconstruction algorithm. To 
reconstruct f  at the point x, the contributions of pR(f, s) must 
be calculated (here s5 x # b selects the line passing through x
as shown). All the measured lines (f, s r) in the f-projection  
make a contribution, weighted by the appropriate ramp kernel 
value r(s2 s r). Reconstruction requires pR(f, s) for all f so the 
argument is repeated for each angle as f increases. Thus FBP 
requires nontruncated projections p(s, f) for all angles f.
When using Hilbert transforms instead of ramp-filtering, the 
same argument applies to pH(f, s) (using contributions 
h(s2 s r)) except that a derivative is applied before 
backprojection. 
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truncated projections is that the ramp filtering step to produce 
the filtered projections pR from the measured projections p
requires the entire projection. Using the equivalent derivative 
and Hilbert transform operations does not escape the difficulty 
as the Hilbert transform uses all elements of the projection. 
Most of the work in this area involved methods of extrapolating 
values into the truncated regions of the projections [13], [14], 
[32],[49], [50]. The case of full angular coverage but with all 

projections truncated on both sides is called the interior prob-
lem in the mathematics community. The objective is to recon-
struct the region that is visible (nontruncated) in all projections, 
despite the contamination due to external parts of the object. It 
has been proven mathematically [52], [53], [3], [45] that the 
solution of the interior problem is not unique. Unambiguous 
reconstruction of the interior region-of-interest is impossible 
because multiple density functions can give the same measured 

Consider a true object f  to be reconstructed, and some interior 
region A that is viewed in all the projections. The region A
can be shown to be convex [56] and for simplicity we assume it 
to be circular of radius r1. We move the origin of the system to 
the center of A, and note that since projections are truncated 
on both sides, there must be a second, larger circle that lies 
entirely inside the object; let r2 be the radius of this second cir-
cle. Now it is possible to construct a function fN such that i) 
fN 1x 2 5 0 for ||x|| . r2, ii) fN 1x 2 2 0 (almost everywhere) for 
||x|| , r1,  and iii) pN 1f, s 2 5 0 for all f [ 10, p 2 , |s| , r1.
Consider the measurements of the function fN. The data are 
truncated at a radius r1, and the measurements are zero inside 
this radius. However the function itself is nonzero. This means 

that both f  and f1 fN give the same measurements but are 
different almost everywhere inside the region of interest A.
Obviously, the function fN must contain both positive and neg-
ative densities, but even if it is known that the true function is 
nonnegative there will be object functions f1 kfN (for a scalar 
constant k) which are nonnegative and give the same data as 
f. Note also that knowledge of the support of f  does not 
improve the situation because the radius r2 was chosen to 
keep the larger circle inside the object. Specific constructions 
of the function fN can be found in [52], for example, and an 
example is shown in Figure S1 below. The construction of a 
suitable fN requires all projections to be truncated on both 
sides [52, Th. 2]. 

NONUNIQUENESS OF THE INTERIOR PROBLEM 
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[FIGS1] Illustration of a function fN that is nonzero, but whose projection is zero in the interior (measured region). This example is 
circularly symmetric and is zero outside a circle of radius r2 = 1. The interior region has a radius r1 = 0.5. Any two objects that differ 
by fN would produce identical interior data. 
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data. (Mathematically, the mapping from the object to the inte-
rior projections has a nontrivial nullspace; “Nonuniqueness of 
the Interior Problem” provides an element of the nullspace.)

On the other hand, for collections of nontruncated projec-
tions, uniqueness of partial data Radon transforms is relatively 
easy to achieve. A theorem in [52] (see also [3]) states that any 
infinite collection of nontruncated fanbeam or parallel projec-
tions has enough information to uniquely determine the object. 
However, uniqueness alone is not enough for effective image 
reconstruction, as we will see in the case of limited-angle data. 

Although the term can be used more broadly, limited-angle 
data refers to the situation where a subset of parallel projections 
is not available. Specifically, a limited-angle data set is a collec-
tion of parallel projections p 1f, # 2  for f [ I  where I  is an 
interval or a union of intervals with total length (after perform-
ing modulo p) strictly less than p. From the central-section
theorem (7), we immediately note that limited-angle data 
implies that a certain region of the 2-D Fourier transform F of 
the object f  has not been directly measured. However, if the 
angular range I  has nonzero length, the infinitely many projec-
tions along I  ensure a unique solution (within a suitable class 
of object density functions, e.g., the L2 functions on the scanner 
port) matching the limited-angle data. Uniqueness stems from 
the property that the Fourier transform F is an analytic func-
tion because f  has bounded support. The various methods to 
uniquely recover the object density function f  from limited-an-
gle data are implicitly or explicitly based on analytic continua-
tion, a process that is severely ill-posed or unstable. This 
instability is drastically more severe than the mild ill-posedness 
caused by the ramp filter in the FBP algorithm with complete 
data, and is more similar to the ill-posedness of problems such 
as the extrapolation of band-limited signals or the superresolu-
tion problems in imaging [54], [55]. Instability means that the 
inversion process is not continuous, so a minute error in the 
measurements can cause the reconstruction to jump to a solu-
tion far from the correct one (see “Stability and Instability in 
Image Reconstruction”). Reliable reconstruction is not possible 
in such a case, as attested by the limited success of the methods 
to treat limited-angle problems. Limited-angle data causes 
instability everywhere in the object because for nontruncated 
parallel projections, the pattern of measured lines is invariant 
throughout the object (because limited-angle systems are shift-
invariant). In the sections “The Parallel-Fanbeam Hilbert 
Projection Equality” and “Differentiated Backprojection with 
Hilbert Filtering,” we will see examples of problems with incom-
plete data for which instability or nonuniqueness only affects 
certain parts of the reconstructed image, and some partial 
region of interest can be recovered in a stable way from the 
incomplete data. Stability will be an important issue in the sec-
tion “Further Advances Based on the DBP-H Approach.” 

The exterior problem in classical tomography refers to the 
situation where a central segment of all projections is unmea-
sured. The measured sinogram corresponds to the unmeasured 
part for the interior problem, so the interior and exterior prob-
lems are complementary in this sense. (Note that the objective 

is only to reconstruct the exterior region; there are no measure-
ments whatsoever passing through the interior region. This is 
quite different from the situation of the interior problem.) For 
the exterior problem, Theorem 2 in [52] ([53, Th. 5.6]) applies, 
and unique reconstructions are possible. However, the exterior 
problem is unstable, because it is really a form of limited-angle 
tomography. As shown in Figure 3, consider any small region D
to be reconstructed.  There is  a range of  angles 
30, fmin 4 h 3fmax, p 4  for which no measurement line passes 
through this region. We concentrate on reconstruction for just 
the region D. First we add some information: i) let us assume 
that the rest of the object density is known, and ii) let us add 
some hypothetical measurement lines to the small region such 
that complete projections p 1f, # 2  of the region D are measured 
for all f [ 3fmin, fmax 4. Now since the rest of the object is 
known, its contribution to the measurements can be subtracted 
to leave measurements only of the isolated region D. We are 
now in the situation of (parallel projection) limited-angle 
tomography, which we know is unstable. So even by adding 
information we have an unstable problem in reconstructing this 
small region. As the region was chosen generally, we see that 
reconstruction of any part of the object is unstable for the exte-
rior problem. A reconstruction from exterior data is shown in 
“Stability and Instability in Image Reconstruction.”    

Substantial literature exists on practical approaches to 
incomplete data problems, including both ad hoc methods of 
compensating for the missing information, and systematic theo-
retical approaches such as lambda tomography [57], [47]. These 
methods can produce useful reconstructions, especially when 
adapted to some specified imaging task. Here, however, we are 
concerned with reconstructions that are truly quantitative (and 
stable with respect to noise), in the same sense that FBP can 
produce arbitrarily accurate images under ideal implementation 
conditions (very fine discretization, high precision arithmetic) 

φmax

φmin

Angular Range
of Measured
Projections

[FIG3] The exterior problem. All rays that do not pass through 
the shaded circle are measured. The objective is to reconstruct 
the outer (”exterior”) region. The small square will only be 
measured for lines between angles fmin and fmax. Consequently, 
adding some hypothetical measurements (lines shown in green, 
amongst others), and adding prior knowledge of the rest of the 
object then provides classical limited-angle data for the square, 
so it cannot be stably reconstructed, even though the 
reconstructed image is unique for the exterior problem. 
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and ideal measurements (complete, finely sampled sinograms 
with arbitrarily low noise levels). 

By the end of the 20th century, there were ample reasons to 
believe that stable reconstruction (even just ROI reconstruc-
tion) from incomplete data was impossible in classical tomogra-
phy. First, a study of various incomplete data scenarios 
indicated that for a ROI to be stably reconstructed, that region 
must be measured from all angles. The interior problem satis-
fies this requirement, but the interior problem was shown to 
fail the uniqueness requirement. Therefore, neither limited-an-
gle data nor truncated data can be tolerated for accurate stable 

reconstructions. The second and perhaps stronger evidence of 
complete data requirement for ROI reconstruction was the 
explicit mathematical form of the inverse transformation that 
maps sinograms back to objects [(4)–(5)]. As seen above, this 
inversion formula shows that each point in the object receives a 
contribution from every measured line through the object, even 
lines that pass far from the point being reconstructed 
(Figure 2). It simply didn’t seem possible that ROI reconstruc-
tion could be performed with anything less than complete mea-
surement data. In the sections “The Parallel-Fanbeam Hilbert 
Projection Equality” and “Differentiated Backprojection with 

Image reconstruction from line integrals with complete or 
incomplete data is an ill-posed inverse problem. With such 
problems, proving that the solution is unique is not suffi-
cient to guarantee that reliable reconstruction is possible in 
practice. Mathematically, uniqueness ensures the existence 
of an inverse operator, mapping the data to the solution, 
but this operator might be discontinuous implying that 
arbitrarily small perturbations of the measurements can 
cause arbitrarily large perturbations of the solution. For 
mildly ill-posed problems, stability is restored typically by 
restricting the class of admissible solutions using some a 
priori knowledge on the physical properties of the object 
being recovered. In most cases this prior knowledge reflects 
the expected smoothness of the solution. After proving 
uniqueness, it is thus essential in practice to investigate 
mathematically whether the reconstruction error, the dif-
ference between the solutions from noise-free and from 
noisy data, can be bounded in terms of the error on the 
measurements, assuming some reasonable constraint on 
the class of admissible solutions. Obtaining such error 
bounds is often straightforward when a closed form inver-
sion formula is available, such as the FBP formula for recon-
struction from complete data. 

For image reconstruction problems, there exists a simple and 
practical operational method to identify situations where sta-
ble reconstruction is certainly impossible (identify that the 
problem is severely ill-posed). To establish instability of recon-
struction at a point P, the method consists of searching for a 
line-segment centered at P that is not tangent to any measure-
ment line. This line segment indicates an edge in the image 
that will be extremely difficult to recover—or rather, an edge 
that can’t be reliably distinguished from other structures at 
that point in the image, as illustrated in Figure S2. This tangen-
cy requirement cannot be reversed to establish stability, but it 
does allow easy identification of incomplete data configura-
tions where stable reconstruction is impossible, even though 
uniqueness may hold. The exterior problem is such a configura-
tion, and is illustrated in Figure S3. This intuitive method is sup-
ported by a rigorous mathematical basis due to Finch [58]. A 
similar reasoning in the 3-D case [58] has been used to show 
that reconstruction from cone-beam projections is unstable at 
points where Tuy’s condition [59] fails. 

STABILITY AND INSTABILITY IN IMAGE RECONSTRUCTION 

Density 1

Density 2
Density 0

[FIGS2] Two objects, 
virtually indis-
tinguishable from 
the measurements 
lines shown because 
none of the lines 
are tangent to the 
long edges. 

(a) (b)

[FIGS3] Reconstructions of the same phantom from 
(a) complete data and (b) from measurement lines not 
intersecting the blue circle (exterior data). Reconstructions 
were obtained by applying the ordered-subsets maximum 
likelihood expectation maximization (OSEM) algorithm (see 
e.g., [8]) to a discretized version of the problem (512 3 512 
image, 512 3 512 sinogram, four subsets, 100 iterations). The 
exterior problem has a unique but unstable solution so 
accurate general reconstruction is impossible in practice. The 
bars that are poorly reconstructed have no measurement lines 
tangent to their long edges. Exterior data cannot stably 
recover all features of the object. 
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Hilbert Filtering,” we describe two different mathematical 
approaches that successfully attacked this doctrine and estab-
lished that stable ROI reconstructions from incomplete data 
could be achieved in certain situations. 

THE PARALLEL-FANBEAM 
HILBERT PROJECTION EQUALITY
In this section, we present a mathematical formula with direct 
consequences for ROI reconstruction from incomplete (yet 
mathematically sufficient) data. We will see how it penetrates a 
slight gap in the analysis of partial data problems, and finesses 
the ‘all or nothing’ requirement of the FBP inversion formula. 

THE HILBERT PROJECTION EQUALITY
First, the Hilbert transform of fanbeam data is defined 

gH 1vl, f 2 5 3
2p

0
g 1vl, f r 2h 1sin 1f2f r 22 df r (14)

and we note that calculation of gH 1vl, f 2  requires all values of 
the fanbeam projection g 1vl, # 2 ,  just as the calculation of 
pH 1f, s 2  requires all values of the parallel projection p 1f, # 2 .

The parallel-fanbeam Hilbert projection equality [53] is 

pH 1f, s 2 5 gH 1vl, f 2 where   s5 vl # b (15)

with pH  from (9). Recall from (11) that the condition s5 vl # b
means that the vertex point vl lies on the line 1f, s 2 .

Equation (15) is of fundamental importance. It shows that 
there is some flexibility in obtaining pH 1f, # 2 , in particular if 
any values of the p 1f, # 2  projection are unavailable (truncated, 
for example). This is the key point, because it was previously 
assumed that pH 1f, s 2  could not be obtained for any s if the 
projection p 1f, # 2  was truncated. Instead, 
we see that pH 1f, s 2  can be evaluated 
using a fanbeam projection provided (i) 
the fanbeam vertex v  lies on the line 
1f, s 2 , and (ii) the fanbeam projection 
g 1v, # 2  is not truncated; see Figure 4. 

Demonstrations of (15) can be found in 
[61] and [60]. A full mathematical proof in 
a more general context appears in [53]. 
The simplified version of [60] is given in 
“A Demonstration of the Hilbert Pro -
jection Equality” on page 68.

COMPLETE FANBEAM PROJECTIONS 
ON A REDUCED TRAJECTORY
A fanbeam projection g 1v, # 2  is called 
complete (nontruncated) if g 1v, f 2  is 
measured or known to be zero for all f.
For the case of a 2-D scan consisting of 
complete fanbeam projections, the Hilbert 
projection equality provides a significantly 
improved data sufficiency condition, 
allowing partial reconstruction from a 

fanbeam trajectory on less than a shortscan, that is, from a fan-
beam trajectory too short to measure all lines through the 
object (see Figure 5). 

Fanbeam Data Condition: The point x can be reconstructed 
from complete fanbeam projections provided a fanbeam vertex 
can be found on each line passing through x [61].  (C1) 

p (φ, ·)
Truncated

x

s = x  · β = vλ · β

pH(φ, s) =
gH(vλ, φ)

g (vλ, ·)

vλ

[FIG4] Implications of the Hilbert projection equality. A truncated 
parallel projection is shown (the dotted lines are unmeasured). 
According to parallel projection theory (see Figure 2), if any 
projection is truncated, then reconstruction at (any) point x
cannot be performed because pH (f, s) cannot be obtained. 
However, the Hilbert projection equality shows that pH(f, s)
might still be obtained via gH(vl, s) provided a complete 
(nontruncated) fanbeam projection g(vl, # ) exists whose vertex 
lies on the line (f, s). For data consisting entirely of complete 
fanbeam projections, the point x can be reconstructed provided 
a fanbeam vertex lies on each line passing through x.

The Simulated Scanner Geometry

1.00

1.01

1.02

1.03

1.04

1.05

[FIG5] Reduced (160°) fanbeam scan. Upper image: naive reconstruction (but 
nonetheless using standard fanbeam FBP with redundancy weighting w(vl, f)). Lower 
image: reconstruction using the Hilbert projection equality, in FBP format [(16) and (17)]. 
The reconstruction is accurate to the right of the dotted green line, where the fanbeam 
data condition (C1) is satisfied. (All simulations in this article use a modified Shepp-Logan 
phantom [62] with elongated outer ellipses, and adjusted intensities in the three small 
ellipses at right.) 
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Under this condition the reconstruction procedure sim-
ply uses (4), (8), and (15). Equation (4) requires calculation 
of pR 1f, s 2  for each line 1f, s 2  passing through x. The fil-
tered projection value pR 1f, s 2  can be obtained from a 
derivative of pH 1f, s 2 ; see (8), and (15) shows how pH 1f, s 2
can be obtained from gH 1vl, f 2  using a suitable fanbeam 
projection g 1vl, # 2  that is assured to exist by the fanbeam 
data condition. 

Aficionados of cone-beam reconstruction theory will recog-
nize this fanbeam data condition as the exact 2-D analog of Tuy’s 
ROI cone-beam data sufficiency condition [59], published in 
1983. The Hilbert projection equality, (15), and higher-dimen-
sional versions have been known since at least 1980 [53], but 
the implications for 2-D fanbeam ROI reconstruction were only 
published in 2002 [61]. 

Furthermore Noo et al. [61] extended this concept to pro-
duce new fanbeam formulas in the same FBP format as (12) and 
(13) but with the significant advantage that fanbeam data from 
reduced trajectories allow accurate reconstructions within ROIs 
that satisfy the data condition (C1). For the case of a (partial) 

circular trajectory with l [ L # 30, 2p4, the ROI reconstruc-
tion formula becomes 

f 1x 2 5 3
L

1
|| x2 vl ||

3w 1vl, f 2g2 1vl, f 24 `
f5arg1x2vl2

dl (16)

g2 1vl, f 2 5 1
2p3

l1p/2

l2p/2
h 1sin 1f2f r 22 '

'l
g 1vl, f r2 df r. (17)

[The notation 1'/'l 2g 1vl, f r 2  should be interpreted as 
1'/'l 2 g| 1l, f r 2 , where g| 1l, f r 2 5 g 1vl, f r 2 .] The weight 
function w provides compensation for the situation where a 
point x receives contributions from two different fanbeam pro-
jections [10]. For the case of a 360° scan, the natural choice is 
the constant w5 1/2. For a general circular scan consisting of 
collections of finite angular segments, a suitable choice would 
be w 1vl, f 2 5 c 1l 2 / 3c 1l 2 1 c 1p1 2f2 l 2 4 , where c 1l 2  is a 
smooth function that is zero outside the segments of L and 
nonzero within L. A reconstruction from a 160° scan is illus-
trated in Figure 5.

Fanbeam FBP (12)–(13)

360° Scan 360° Scan

Hilbert FBP (16)–(17)

160° Scan

Red. Scan H-FBP (16)–(17)

(Vertical Profiles Taken Through the Three Small Ellipses–Along the Yellow Arrow)

Reconstructions from Sinograms with Noise Added

[FIG6] Comparison of noise behavior of reconstruction algorithms. The Hilbert projection equality FBP magnifies noise to roughly the 
same degree as does conventional FBP, even for the reduced 160° scan (which uses less data). 

We give a simplified demonstration (taken from [60]) of (15). 
We suppose that the line 1f, s 2  contains the vertex v  (we 
drop the l which plays no role in this discussion). We will 
translate the origin to v  and rotate the axes by f so that 
afterwards, v5 10, 0 2 , f5 0, and s5 v # b5 0. Now, consider 

pH 1f, s 2 5 3
`

2`

p 1f, s r 2h 1s2 s r 2ds r5 3
`

2`

p 10, s r 2h 102 s r 2ds r

5 3
`

2`

e3
`

2`

f 1r 11, 0 2 1 s r 10, 1 22dr fh 12s r2ds r

5 3
`

2`
3
`

2`

f 1r, s r 2
2ps r

drds r

and on the other hand 

gH 1v, s 2 5 3
2p

0
g 1v, f r 2h 1sin 1f2f r 22df r

5 3
2p

0
g 110, 0 2 , f r 2h 1sin 102f r 22df r

5 3
2p

0
e3

`

0
f 110, 0 21 l 1cosf r, sinf r 22dlfh 12sinf r 2df r

5 3
2p

0
3
`

0

f 1 lcosf r, lsinf r 2
2psinf r

1
l

ldldf r

and the change from polar coordinates 1 lcosf r, lsinf r 2  to rect-
angular 1r, s r 2  completes the demonstration. 

A DEMONSTRATION OF THE HILBERT PROJECTION EQUALITY
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Note that for a 360° scan (with L5 30, 2p 4  and 
w 1vl, f 2 5 1/2), (16) and (17) do not collapse to the standard fan-
beam FBP (12) and (13). In (16), the backprojection weighting 
term is ||x2 vl||

21 whereas in (12) it is ||x2 vl||
22. The  filtered 

projection g2 is formed quite differently from g1. The two methods 
are not mathematically equivalent. The right-hand side (RHS) of 
(16) can only be shown to match the RHS of (12) by applying the 
definition of g 1vl, f 2 , (10). This point has been mentioned in [63] 
and will be discussed in more detail in the section “Multiple
Inversion Formulas for the 2-D Radon Transform.” Reconstructions 
from a simulated 360° scan are shown in Figure 6, and they dem-
onstrate that the algorithm of (16) and (17) is no more sensitive to 
noisy data than the existing method of (12) and (13). Performing a 
comparative digital implementation with similar noise levels is a 
convenient way to experimentally evaluate the stability of algo-
rithms. When the noise of the reconstruction is very similar to that 
obtained with a different program (such as FBP), it suggests that 
both methods have similar stability properties, at least in practice. 
Other example reconstructions can be found in [61]. 

We end this section with a different formula for reduced 
fanbeam trajectories [63], that does collapse to (12) and (13) 
for 360° scans (with w 1vl, f 2 5 1/2) 

f 1x 2 5 3
L

1

||x2 vl||
2 3 3 g1 1vl,f 2 w 1 vl,f2
1 g3 1vl, f2wr 1vl,f4 `

f5arg1x2vl 2
dl

 (18)

g3 1vl,f25 Rv cos 1f2 l 2
2p 3

l1p/2

l2p/2
g 1vl, f r 2 h 1sin 1f2f r 2 2 df r,

 (19)

where w r 1vl, f 2  means 1'/'l 2w| 1l, f 2
with w| 1l, f 2 5 w 1vl, f 2 , and g1 is given 
by (13). 

VIRTUAL FANBEAM PROJECTIONS
The Hilbert projection equality (15) can 
only be applied to nontruncated fan-
beam projections. When the fanbeam 
vertices are far from the object, the 
projections become nearly parallel and 
the data condition for a point x  to be 
reconstructed forces a nearly complete 
sinogram. It is the requirement of 
nontruncated projections that limits 
the application of this approach. This 
restriction can be considerably relaxed 
by considering virtual fanbeam projec-
tions [60]. The idea is not to look at 
how the projections were measured, but 
to consider rearrangements of the mea-
sured lines that form nontruncated 

 fanbeam projections. We call these rearranged projections, 
virtual fanbeam (VFB) projections. 

In the example of Figure 7, a fanbeam scan is taken with a 
circular vertex trajectory and a detector too small to cover the 
object. All the measured fanbeam projections are truncated, and 
some are even truncated on both sides. A substantial subset of 
the data can be rearranged into VFB projections by selecting (for 
example) VFB vertices inside the scanner FOV. These VFB pro-
jections are immediately seen to be nontruncated because all 
lines passing through the FOV have been measured. Many other 
valid (nontruncated) VFB projections outside the FOV are possi-
ble in this example by considering vertices to the right of the 
FOV. From the VFB trajectory shown, all points to the right of 
the green dashed line satisfy the data condition (C1) and can be 
reconstructed by (4), (8), and (15) as described in the section
“Complete Fanbeam Projections on a Reduced Trajectory.” 

VFB vertices cannot be taken inside the object. To see 
why, note that the Hilbert projection equality requires half-
line integrals from fanbeam vertices. For virtual vertices 
inside the object, the measurement line cannot be separat-
ed into two half lines. For virtual vertices outside the 
object, the required half line is extracted according to (11) 
with one of the terms on the right hand side being zero. 
The half-line integrals can always be obtained if the VFB 
vertices are outside the convex hull of the object support. 

For general incomplete data problems, the VFB can be 
applied only if suitable VFB projections can be found that 
satisfy the data condition (C1) for points inside the desired 
ROI. Once suitable VFB projections have been found, the 
algorithm can proceed as described earlier, using (4), (8), 
and (15). More implementation details can be found in [61, 
Sec. 4.1]. The VFB vertices are not required to form a 

[FIG7] Virtual fanbeam reconstruction. All the measured fanbeam projections are 
truncated (sometimes on both sides). A virtual trajectory can be taken just inside the 
scanner FOV, the red circle, ensuring nontruncated virtual fanbeam projections and valid 
reconstruction to the right of the green dotted line. 
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smooth trajectory, but if they do then fanbeam FBP recon-
structions can be performed from the virtual projections 
following the description in [61, Sec. 4.2]. The main prob-
lem is, given an incomplete sinogram and knowledge of the 
object support (or in the worst case, knowledge of a convex 
region that contains the object, such as the scanner port), 
what is the largest ROI that can be reconstructed using the 
VFB approach? This reduces to identifying a maximal ROI 
 satisfying the data condition for all possible sets of valid 
VFB projections. 

We outline a procedure for finding this maximal ROI and the 
corresponding virtual vertices from a general incomplete data 
set. We describe the procedure in terms of parallel-projection 
sinograms because they provide a convenient format with which 
to represent general data measurements. We make the following 
assumptions: i) the (incomplete) sinogram is in parallel projec-
tion format p, ii) the set of unmeasured values is known, and 
iii) a convex region V  that contains the object support is 
known. We remark that the smallest possible V  should be used 
because this maximizes the flexibility in selecting the virtual 
vertices and therefore the size of the region where accurate 
reconstruction is possible. We also remark that virtual vertices 
are not needed for lines belonging to nontruncated (parallel) 
projections. The main steps of the algorithm are the following: 

Identify1) T, the set of angles for which the projection 
p 1f, # 2  is not complete. 

Identify the region of complete angular coverage, region 2)
C, defined to be the set of points x in the scanner port for 
which all lines passing through x are either measured or do 
not intersect V. Define the region A as V d region C.

For all lines 3) 1f, s 2  that cross region A and with f [ T,
determine the set V 1f, s 2  defined as the intersection of the 
line 1f, s 2  with the region C\ A. It is easily seen that 
V 1f, s 2 5 5v o V : v # b5 s, g 1v, # 2  is nontruncated (com-
pletely measured)} is the set of valid VFB vertices on the line 
1f, s 2 .

The maximal ROI is given by 4) 5x [  region A : 
V 1f, x # b 2 2 ~ for all f [ T6, which is the subset of region 
A such that a valid VFB vertex exists for all lines passing 
through the point x.
The procedure is to search for valid VFB vertices on all lines 

where they are needed. They are not needed on any unmeasured 
lines, nor on lines of a complete (nontruncated) parallel projec-
tion. This tedious procedure to establish where the VFB method 
can be applied is a serious drawback to the method. The DBP 
approach of the section “Differentiated Backprojection with 
Hilbert Filtering” admits a simpler analysis, based on the geom-
etry of regions A and C.

The VFB method was introduced in [60]. More examples can 
be found there and in [64] and [65]. 

MULTIPLE INVERSION FORMULAS FOR 
THE 2-D RADON TRANSFORM
In the sections “Complete Fanbeam Projections on a Reduced 
Trajectory” and “Virtual Fanbeam Projections,” the Hilbert pro-

jection equality has been the key to reconstruction methods for 
some kinds of incomplete data problems. The very existence of 
these solutions demonstrates that multiple inversion formulas 
for the Radon transform must exist. If a certain ROI can be 
recovered from incomplete data, it can certainly be recovered 
from complete data. Since the FBP method for complete data 
uses all measured lines and the other method does not need 
certain lines, these two formulas must be nonequivalent. This 
important concept will be clarified in the section “Nonequivalent 
Reconstruction Formulas.” 

For reconstruction of the whole object using complete 
data, we have already seen two explicit inversion formulas (at 
the end of the section “Complete Fanbeam Projections on a 
Reduced Trajectory”). We show here using the VFB method 
that there are infinitely many inversion formulas, all funda-
mentally different yet all performing the unique 2-D inverse 
Radon transformation. 

The idea is simple: the value pH 1f, s 2  can be obtained from 
gH 1v, f 2  for any VFB vertex v lying outside the object and on 
the line 1f, s 2 . Assuming the object support lies within a circle 
of radius r, we can write 

f 1x 2 5 1
2p3

p

0

'
's

q 1f, s, t 2 `
s5x # b

df (20)

where q 1f, s, t 2 5 gH 1v, f 2  for v5 sb1 ta, and where t  is 
only restricted in magnitude |t| ."r22 s2 to ensure the virtu-
al vertex is outside the object. After converting back to the origi-
nal parallel projections and changing variables to match 
standard FBP format, an explicit form for q 1f, s, t 2  can be 
given (see [66]) 

q 1f, s, t 2 5 t 21 s2

t 2 3
r

2r

p 1f1 d, s r 2h 1ws2 s r 2
w

ds r, (21)

where the quantities d and w depend on the variables s, t, s r
a n d  a r e  g i v e n  b y  d 5 cos21 1s r/"s21 t2 2 2 sgn 1 t 2
cos21 1s/"s21 t 2 2  and w5"s21 t22 s r2/t. (The cos21 func-
tion gives values in the range [0, p 2  as usual.) As long as t is 
large enough, it can be chosen at leisure and it is allowed to vary 
with f and s, so we can write tf,s to emphasize this depen-
dence. Each choice of tf, s yields a different inversion formula 
that will correctly invert (3) and yet the formulas are not equiv-
alent because each would react differently to noisy data. As |tf, s|
increases, the virtual vertex on the line 1f, s 2  moves further 
from the object. In the limiting case of |tf, s| S `, formula (21) 
collapses to (9), and the reconstruction becomes standard FBP 
(for parallel projections). Note that t is not just a regulariza-
tion parameter. 

NONEQUIVALENT RECONSTRUCTION FORMULAS
The distinction between equivalent and nonequivalent recon-
struction formulas concerns their behavior with respect to 
nonideal sinograms. Ideal sinograms are consistent with some 
object. Expressed mathematically, an ideal sinogram lies in the 
range of the 2-D Radon transform and satisfies certain range 
conditions, also called consistency conditions [3]. The 
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 principal aim of any reconstruction algorithm is to map these 
ideal sinograms back to the unique object consistent with it. 
The range conditions describe exactly what redundancies exist 
in an ideal sinogram, and they provide flexibility as to how the 
inverse mapping can be expressed, leading to nonequivalent 
inversion formulas. Nonequivalent inversion formulas give the 
same answer when presented with an ideal sinogram, but dif-
ferent images when presented with noisy sinograms [63], [67]. 
Equivalent inversion formulas, on the other hand, are simply 
mathematical rewritings of a particular inversion formula and 
would reconstruct the same images from noisy sinograms 

(except for implementation effects such as rounding errors, 
different regularizations, different discretizations, and sam-
pling). The FBP formulas for parallel and fanbeam geometries 
 presented in the section “20th Century State of the Art” [(4) 
and (5) versus (12) and (13)] are equivalent algorithms, where-
as the fanbeam FBP formulas for 3608 scans [(12) and (13) ver-
sus (16) and (17)] are nonequivalent. Two formulas are 
nonequivalent if it is impossible to transform one into the 
other by mathematical operations applying the range 
 conditions, i.e., without using the original link, (3), between 
the object and the sinogram. For each choice of tf,s, (20) and 

Parallel Projections 
Using the definition (3), the derivative of the parallel projec-
tion is 1'/'s 2p 1f, s 2 5 e b # =f 1sb1 ra 2dr. The backprojection 
of (26) is therefore 

bf1,f2
1x 2 5 1

p
3
f2

f1

'
's

p 1f, s 2 `
s5x # b

df

5
1
p
3
f2

f1

3
`

2`

b # =f 1 1x # b 2 b1 ra 2dr df.

Using r r5 r2 x # a, noting that x5 1x # b 2 b1 1x # a 2a, and 
commuting the order of integration, 

bf1,f2
1x 2 5 1

p
3
`

2`
3
f2

f1

b # =f 1x1 r ra 2df dr r.

Note that da/dfcb, so 1/r rc f 1x1 r ra 2 5 1 b # a 2  and the 
integral over f reduces to two boundary terms. Now recalling 
(22) and (9), 

bf1,f2
1x 2 5 1

p
3
`

2`

1
r r
1f 1x1 r ra2 2 2 f 1x1 r ra1 22dr r

5H2a2
f 1x 2 2H2a1

f 1x 2

so bf1, f2
1x 2 5Ha1

f 1x 2 1H2a2
f 1x 2 , as illustrated in Figure S4. For 

the case f25f11p,  we have a252a1 so bf1,f11p
1x 2 5

2Ha1
f 1x 2 , which establishes (27). 

Fanbeam Projections
By maintaining the vertex trajectory vl outside the convex 
hull of the object, we can extend the integration limits in 
definition (10) to 12`, `2 , so we can write 

gD5
'
'l

g 1vl, f 2 5 3
`

2`

vlr # =f 1vl 1 la 2dl,

where vlr5 dvl/dl. Now the backprojection of gD, given by 
(29), becomes 

b̂l1,l2
1x 2 5 1

p
3
l2

l1

1
||x2 vl ||3

`

2`

vlr # =f avl 1 l
1x2 vl 2
|| x2 vl ||

bdldl,

where we have used that a5 y/||y|| if f5 argy. Now substitut-
ing l5 112 t 2 ||x2 vl||,  and then changing the order of 
integration after noting that 1 d /dl 2f 1x2 t 1x2 vl 22 5
t vlr # =f 1x2 t 1x2 vl 22 , the l integral reduces to two boundary 
terms 

b̂l1,l2
1x 2 5 1

p
3
l2

l1

3
`

2`

vlr # =f 1x2 t 1x2 vl 22dtdl

5
1
p
3
`

2`

1
t
1f 1x2 t 1x2 v2 22 2 f 1x2 t 1x2 v1 222dt

5Hx2v2
f 1x 2 2Hx2v1

f 1x 2
so b̂l1,l2

1x 2 5Hv12xf 1x 2 1Hx2v2
f 1x 2  as illustrated in Figure S5. 

For x [ 1v1, v2 2  we have v12 x5 k1 1v12 v2 2  and v22 x5
k2 1v22 v1 2  for k1, k2 . 0, in which case b̂l1,l2

1x 2 5 2Hv12v2
f 1x 2 ,

which is (30), and from which (31) also follows easily. 

DIFFERENTIATED BACKPROJECTION AND HILBERT TRANSFORMS 

φ2 = 135°

φ1 = 0°

x

[FIGS4] Illustration of bf1, f2
1x 2 5Ha1

f 1x 2 1H2a2
f 1x 2 .

v1

v (Λ)

v2 x

[FIGS5] Illustration of b̂l1,l2
1x 2 5Hv12xf 1x 2 1Hx2v2

f 1x 2 .
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(21) generate a new nonequivalent inversion formula for the 
Radon transform, which illustrates the vast flexibility provided 
by the 2-D consistency conditions. 

More importantly, this concept of nonequivalent inversion 
formulas explains why the argument at the end of the section
“20th Century State of the Art” (that conventional FBP requires 
complete sinograms) does not, after all, preclude ROI recon-
struction from incomplete data. Other, nonequivalent inverses 
might not draw on the whole sinogram to perform accurate 
reconstruction of some ROI. Several examples have been pre-
sented in this section, and the section “Differentiated 
Backprojection with Hilbert Filtering” will introduce a different 
approach, further increasing the range of incomplete sinograms 
that can be accurately handled. 

DIFFERENTIATED BACKPROJECTION 
WITH HILBERT FILTERING
The Hilbert projection equality has opened the door to a 
number of results in ROI reconstruction from incomplete 
data, but they can only be applied for specific situations 
where enough complete fanbeam measurements or complete 
virtual fanbeam measurements are available to satisfy the 
data condition. In this section, we explore another class of 
incomplete data methods based on differentiated backprojec-
tion (DBP) with Hilbert  post-filtering. In broad terms, these 
DBP-H methods operate in two steps: the first step is to per-
form a backprojection of the derivative of the projection data 
(called “DBP” to match the established “filtered backprojec-
tion” terminology), and the second step involves a post pro-
cessing of this backprojected image involving the Hilbert 
transform. The method is easier to apply than the Hilbert 
projection equality methods that involve virtual fanbeam 
projections, and is more convenient for analyzing incomplete 
data problems. However, it too has restrictions on the kinds 
of incomplete data problems it can resolve. 

The link between the Hilbert transform and the DBP is based 
on a general mathematical result of Gelfand and Graev [68]. The 
potential application to tomography was identified in 2002 by 
Finch [69], and made explicit by Noo et al. [70], Zhuang et al. 
[71], and Zou et al. [72] for parallel projections and for fanbeam 
projections. We only consider 2-D problems in this article, but 
the key ideas were developed simultaneously in three dimen-
sions, providing elegant solutions to the cone-beam reconstruc-
tion problem in various configurations. See, for instance, 
[73]–[76] among many papers on this topic. 

HILBERT IMAGES
The Hilbert transform operates on one-dimensional func-
tions, but we can consider the Hilbert transform of an object 
function by applying one-dimensional transformations along 
parallel lines in a fixed direction. Thus we define an image 
Ha f  obtained by performing Hilbert transforms along the 
direction a

Haf 1x 2 5 3
`

2`

f 1x2 ta 2h 1 t 2dt (22)

recalling that h 1t 2 5 1/pt and that the singularity at t5 0 is 
handled in the principal value sense. The object has finite sup-
port so the integration is performed over finite limits not explic-
itly specified. The Hilbert filtered image will nonetheless extend 
infinitely in the 1a  and 2a  directions. We note that 
H2af 1x 2 5 2Haf 1x 2 , and that we can extend the definition to 
arbitrary nonzero vectors v by 

Hv f 1x 25Hv/ || v || f 1x253
`

2`

f ax2t
v

||v ||
bh 1t 2dt53

`

2`

f 1x2tv2h 1t2dt

  (23)

so Hv will apply a Hilbert filtering in the direction of the vector 
v; the magnitude of v is irrelevant. 

Performing a Hilbert transform corresponds to multiplica-
tion by 2i sgns in the Fourier domain, so applying a second 
Hilbert transform will, up to a minus sign, return the original 
function. Thus for any nonzero vector v,

Hv Hv f52f . (24)

We will see below that the result of the DBP operation will pro-
vide us with a certain Hilbert image that then needs to be invert-
ed to complete the reconstruction. Unfortunately, (24) can only 
be applied if the Hv f  is known everywhere on its infinite extent. 
Aside from the difficulty of storing such a function, it will turn 
out that only part of the Hilbert image Hv f  can be obtained when 
considering partial data problems. Finding a suitable inverse to 
use instead of (24) will be the crux of the DBP-H method. 

DIFFERENTIATED BACKPROJECTION
From now on, we extend the notation given by (1) and (2) in the 
obvious way: a r5 1cosf r, sinf r 2 , an5 1cosfn, sinfn 2 , and so 
on. We also define f05 0, so a05 11, 0 2  and b05 10, 1 2 .

We consider parallel projections and fanbeam projections in 
turn. For the case of parallel projections, the derivative is taken 
with respect to the variable s

pD 1f, s 2 5 '
's

p 1f, s 2 , (25)

followed by a backprojection over the angular range 1f1, f2 2
to yield 

bf1,f2
1x 2 5 1

p3
f2

f1

pD 1f, s 2 `
s5x # b

df. (26)

Straightforward mathematical manipulations (see “Differentiated 
Backprojection and Hilbert Transforms” on page 71) show that 

bf,f1p 1x 2 5 2Ha f . (27)

In particular, we note that b0, p 5 2Ha0
f , which means that 

backprojecting the derivative of the projections over the 
angular range 10, p 2  results in the Hilbert transformed image 
in the x1 direction (the horizontal, a0 direction). Since b0,p
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only involves a derivative and a backprojection, we see that 
Ha0

f 1x 2  can be obtained if all lines passing through and near 
x are measured. 

For fanbeam projections, we consider a smooth connected 
vertex trajectory v 1l 2 5 vl  parameterized by l,  for 
l [ L5 3l1, l2 4. The trajectory is located outside the convex 
hull of the object support. We define the derivative of the fan-
beam projections by 

gD 1vl, f 2 5 '
'l

g 1vl, f 2 , (28)

[where, as in (17), the RHS should be interpreted as 
1'/'l 2 g| 1l, f 2  with g| 1l, f 2 5 g 1vl, f 2 ]. The backprojection 
of these differentiated fanbeam projections is given by 

b̂l1,l2
1x 2 5 1

p3
l2

l1

1
|| x2 vl ||

gD 1vl, f 2 `
f5arg1x2vl2

dl. (29)

To simplify the notations, we write vk for vlk
, and we write 

3v1, v2 4  to indicate the line segment joining v1 to v2. It can be 
shown that 

b̂l1, l2
1x 2 5 2Hv12v2

f 1x 2  if x [ [v1, v2 4 . (30)

The direction of the Hilbert transform can be adjusted by 
breaking the trajectory into two segments at the point v3, where 
v32 x is the desired filtering direction 

1b̂l3,l2
1 b̂l3, l1

2 1x252Hv32x f 1x2  if  x[ 3v1, v24 and l3[ 1l1,l22 ;
 (31)

see Figure 8. 
Equation (31) describes a convenient method of obtaining 

Ha f  directly from fanbeam projections rather than rearranging 
the data into parallel projections and applying (27). Even if the 
fanbeam trajectory consisted of several connected segments, 
Ha f 1x 2  could be obtained using the fanbeam DBP of (28) and 
(29) for any x such that all lines through x intersect the trajecto-
ry. The backprojection would just need to be broken into the sum 
of suitable trajectory segments. We do not elaborate on this pro-
cedure here. 

A different expression linking fanbeam data to the Hilbert 
transform can be considered, which involves 1'/'f 2g 1vl, f 2
instead of 1'/'l 2g 1vl, f 2  in (29) [70]. This case will not be pre-
sented here. 

INVERSION OF THE FINITE HILBERT TRANSFORM
If the Hilbert transform Hq 1s 2  of a function q 1s 2  is known for 
some interval [L, R 4  that includes the support of the function q,
then the function q can be recovered according to (see, for 
example, Section 4.3 (16) in [77])

q 1t25 21

"1t2 L 2 1R2 t 2 a3
R

L
"1s2L 2 1R2 s2 Hq 1s2

p 1t2 s2 ds2Kb
 (32)

for s [ 1L, R 2 , and where the unknown constant K  can be deter-
mined, for example, using the fact that q 1s0 2 5 0 for some known 
s0 [ 1L, R 2 .  Alternatively, a calculation shows that 
K5 11/p 2 eq 1s 2ds. Equation (32) is said to invert the finite 
Hilbert transform. In the context of image reconstruction, we 
sometimes refer to it as the truncated Hilbert transform in analogy 
with truncated projections, and also because the truncation of the 
Hilbert transform is related to truncation of the projections as we 
will see below. 

Now in the image reconstruction context, we assume that the 
DBP (in either parallel or fanbeam format) produces an image 
bD 1x 2  equal to Ha f 1x 2 . To simplify the explanations, we fix a5 a0

in this section, so Haf  refers to the Hilbert transform of the object 
density along horizontal lines. We will use the finite Hilbert inverse 
to reconstruct f  along a fixed horizontal line say x25 x2

*.
The object support along x25 x2

* is known to lie inside the 
interval 3fL, fR 4  and we assume that bD 1x1, x2

* 2  is known for 
x1 [ 3hL, hR 4  with hL , fL , fR , hR. In this case, we can apply 
formula (32) as follows: for all x1 [ 1 fL, fR 2 ,

f 1x1, x2
* 2 5 2 1

p"1x12 hL 2 1hR2 x1 2
3

hR

hL

"1s2 hL 2 1hR2 s 2 bD 1s, x2
* 2

3 a 1
1x12 s 2 2

1
1x12 s 2 bds, (33)

where we have used f 1x1, x2
* 2 5 0  for some choice of 

x1 [ 1hL, fL 2 h 1 fR, hR 2 .
It is important to note that the integration limits 1hL, hR 2  in 

(33) encompass an interval for which the Hilbert transform is 
known and that contains the support of the unknown function: 
1 fL, fR 2 ( 1hL, hR 2 . This requirement plays a role in the data 
condition for DBP-H reconstruction. 

The procedure can be repeated for all rows of the DBP image 
(different values of x2

*) to obtain a complete reconstructed image. 

DBP-H RECONSTRUCTION
For complete data, whether in parallel or fanbeam format, the 
procedure for DBP-H reconstruction is to first obtain a DBP 
image over a larger region than the support of the object. From 

v1 v1

v3

v (L) v (L)
v2 v2

x x

[FIG8] DBP for fanbeam trajectories. If x lies on the line segment 
[v1, v2], then Haf (x) can be calculated by backprojecting gD
along i) the path (v1, v2) for a in the direction of v2 2 v1, or ii) 
the paths (v3, v1) and (v3, v2) for a in the direction of v3 2 x.
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this image (bD 1x 2 ), the finite Hilbert inverse, (33), can be 
applied for all horizontal lines to obtain the reconstructed 
image. Note that vertical lines could be used instead, or lines at 
any angle a. It can be shown that for any finite interval 1hL, hR 2 ,
this reconstruction method is not equivalent to standard FBP 
[(4) and (5) or (12) and (13)]. (Equivalence to FBP occurs in the 
limit as 1hL, hR 2 S 12`, ` 2 .)

Figure 9 shows DBP-H reconstructions from incomplete 
data. The red circle indicates the FOV of the scanner; the set of 
measured lines are precisely those that pass through the red 
circle. So each point in this region of complete angular cover-
age has the property that all lines passing through the point 
are measured. In general, for such points x, the DBP bD 1x 2
can be calculated for any choice of Hilbert filtering direction a
(using (27) or (30) as appropriate). We see that in these cases 
(Figure 9), the appropriate filtering direction is vertical, so 
a5 10, 1 2 . Thus the ROI reconstruction image was obtained 
by first forming a DBP image inside the red circle, with 
a5 10, 1 2 . Then for each vertical line within the green bound-
aries, the inverse finite Hilbert transform was applied, accord-
ing to (33) (but adjusted for vertical rather than horizontal 
lines). For this example, horizontal filtering would not have 
been possible, because along horizontal lines the support of f
is not contained in the DBP region (i.e., the required condition 
1 fL, fR 2 ( 1hL, hR 2  is not satisfied). 

For general incomplete sinograms, the procedure for ROI 
reconstruction using the DBP-H method is given below. The 
support of the object is assumed known, and it is known which 
line integrals are missing (unmeasured) from the sinogram. We 
first define the following three regions:

Region A5 5x [ support f : all lines through 
x are measured6  (34)

Region B5 5x [ support f : x o region A6  (35)

Region C5 5x [ scanner port : all lines through x are
 measured or miss the object6 . (36)

The definitions of regions A and C are consistent with the ear-
lier use in this article, and the definitions of regions A and B
have previously appeared in the literature. Note also that region 
A is always a subset of region C, and that regions B and C do 
not intersect. The idea is that region C corresponds to the 
scanner FOV, which is the region for which an accurate DBP 
image can be formed. (However, strictly following the defini-
tion, region C depends on the object support also. For example, 
if the object is completely inside the FOV, then region C is the 
whole scanner port.) 

The procedure for DBP-H reconstruction is the following: 
From knowledge of the object support and the set of 1)

measured rays, determine the three regions A, B, C.
Identify reconstruction line segments. These segments 2)

intersect region A, have endpoints in region C \ A (end-
points outside the object but still in region C), but do not 
intersect region B. A ROI reconstruction might be made 
up of several collections of parallel line segments. 

For each reconstruction line segment, DBP [(27) or 3)
(30)] is performed to obtain Ha f 1x 2  for a  in the direc-
tion of the line, and all x  on the line segment. Then 
the finite Hilbert inversion [(33)] can be performed 
because the line segment extends beyond region A  to 
provide the small space between the endpoints of 
1 fL, fR 2  and 1hL, hR 2 .  The inverse finite Hilbert trans-
form provides the reconstruction for all points along 
the line segment.
From this procedure follows the data condition for ROI 

reconstruction using the DBP-H method. 
DPB-H Condition: The point x can be reconstructed if it 

lies on a line segment extending outside the object on both 
sides, and all lines crossing the line seg-
ment are measured. (C2)

The method reconstructs line seg-
ments using the finite Hilbert inverse, so 
it would be more natural to ask if a par-
ticular line segment can be reconstruct-
ed, rather than individual points. The 
reconstructed ROIs consist of unions of 
line segments that traverse the object 
without crossing region B.

It can be observed that the two ROI 
examples of Figures 5 and 7 can be recon-
structed using the DBP-H approach. 
However, there are incomplete data exam-
ples for which data condition (C2) fails, 
and yet condition (C1) applies (see [70] 
and Figure 13). Furthermore, the example 
of Figure 9(b) cannot be handled using 
the VFB approach: not all points inside 
the reconstructed region satisfy data con-
dition (C1); see [60] for an explanation. 

1.05

1.04

1.03

1.02

1.01

1

1.05

1.04

1.03

1.02

1.01

1

(a) (b)

[FIG9] Examples of ROI reconstructions using the DBP-H method. The ratio of the ellipse 
axes to the FOV radius is 1 : 2 : 4/3. (a) The object is positioned to the side of the FOV and 
(b) centered on the FOV. 
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FURTHER ADVANCES BASED 
ON THE DBP-H APPROACH
The sections “The Parallel-
Fanbeam Hilbert Projection 
Equality” and “Differentiated 
Backprojection with Hilbert 
Fi ltering” presented two 
methods of analytic image reconstruction that apply to some 
kinds of incomplete data problems. Each method provides 
information about which ROIs can be reconstructed under 
particular incomplete data situations, and both methods can 
be written in the form of a single mathematical inversion 
formula. In this section, we describe recent theoretical 
advances in ROI reconstruction that do not provide explicit 
inversion formulas. These advances describe mathematical 
results that establish uniqueness and (more importantly) 
stability for certain ROI reconstruction problems. These 
mathematical results involve the inversion of some form of 
truncated Hilbert transform, which via the DBP formulation, 
implies a related inversion result for image reconstruction 
from truncated data. Although these inversion results do not 
provide direct analytic reconstruction algorithms, they are 
important for understanding the nature of 2-D ROI recon-
struction, and do have implications for iterative reconstruc-
tion algorithms.

INVERSION OF THE ONE-SIDED 
FINITE HILBERT TRANSFORM
An important advance in 2-D ROI reconstruction came from the 
work of Defrise et al. [78]. The motivation was the then unre-
solved case of a scanner FOV (region C) not crossing two 
boundaries of the object; see Figure 10. The DBP method dis-
cussed in the section “Differentiated Backprojection with 
Hilbert Filtering” could not be applied because only one end of a 
line segment contained in region C could lie outside the object, 
and therefore the conditions for the inverse finite Hilbert trans-
form, formula (32), could not be satisfied. This configuration 
also defeats the VFB method because every point in the object 
has many lines that do not contain valid VFB vertices. 

We begin by analyzing feasible regions of the object for 
potential ROI reconstruction. Note that the data conditions (C1) 
and (C2) (for VFB and DBP-H reconstruction, respectively) can 
only be satisfied for points inside region A. This fact follows 
directly from the way the methods are applied, but is also true 
for general incomplete data problems: the only possible points 
for unique stable reconstruction must lie inside region A. The 
reasoning is as follows. By definition, any point x inside region 
B  lacks full angular coverage; there will be lines passing 
through x that are unmeasured. Then, following the argument 
used in the section “Incomplete Data” for the exterior problem, 
a small limited-angle reconstruction problem exists for a neigh-
borhood of that point, and stable reconstruction at x is impossi-
ble. Thus stability cannot hold inside region B, and the only 
candidates for practical quantitative ROI reconstruction lie 
inside region A.

Uniqueness is relatively 
easy to establish. According to 
a theorem of K.T. Smith men-
tioned in [52, Sec. 2.2], any 
infinite collection of nontrun-
cated fanbeam projections will 
ensure uniqueness. Such a col-

lection can be found by assigning virtual fanbeam vertices 

B

α

A
x

fL

fR

hR

hL

C

(a)

(b)

(c)

[FIG10] Example of an incomplete data problem that cannot be 
resolved using the VFB method (see the section “The Parallel-
Fanbeam Hilbert Projection Equality”) or the DBP-H method (see 
the section “Differentiated Backprojection with Hilbert 
Filtering”). (a) For a scanner FOV (shown in red) that is smaller 
than the width of the object, the only hope for reconstructing 
the two small central circles of the phantom would be to avoid 
the situation of the interior problem and to use a configuration 
such as illustrated. (b) The regions A, B, and C  (34)–(36) are 
indicated. There are (almost) no line segments that traverse 
region A with both endpoints in region C \A, so the DBP-H 
cannot be applied. For the VFB method, all valid virtual vertices 
must lie in region C \A, but virtual vertices cannot be found on 
horizontal lines through region A. It can be shown that 
reconstruction is possible at a point x in region A by considering 
a special one-sided finite Hilbert transform along a line passing 
through x and the region C \A. (c) Iterative reconstruction for 
this incomplete data problem, verifying the theoretical result of 
accurate reconstruction inside all of region A. (Reconstruction 
using OSEM: 512 3 512 image, 1,024 3 1,024 sinogram, 16 
subsets, 20 iterations.) 

THERE ARE TWO MAIN TYPES OF 
INCOMPLETE DATA: TRUNCATED 

PROJECTIONS AND LIMITED-ANGLE 
PROJECTIONS.
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along a trajectory in region C \ A. Thus we identify that the 
main issue for theoretically feasible ROI reconstruction is to 
establish stability. 

The main result of [78] was the demonstration that the fol-
lowing finite Hilbert transform problem has a unique and sta-
ble solution. We recall that for a line passing through an object 
density function, the Hilbert transform Haf 1x 2  can be 
obtained from the DBP image bD 1x 2 , which can be computed 
for any point x in region A, and for any direction a. Fix some 
line passing through region A  of the object and through 
region C outside the object. Taking the object support to be 
convex as usual, the density function along the line is known 
to be zero outside an interval 3fL, fR 4. The values of Ha f  are 
known for a single interval 3hL, hR 4  corresponding to the inter-
section of the line with region A.  Suppose now that 
fL , hL , fR , hR as illustrated in Figure 10. We note that the 
interval 3hL, hR 4  no longer contains the object support 3fL, fR 4

as in the section “Differentiated Backprojection with Hilbert 
Filtering.” It has been proved that f 1x 2  can be uniquely and 
stably recovered for x [ 1hL, fR 2  from the Hilbert transform 
values Ha f 1x 2  for x [ 3hL, hR 4  [78]. The stability was estab-
lished by showing that finite errors in the measurement val-
ues Ha f 1x 2  do not produce infinite errors in the 
reconstructed values f 1x 2 ; see “Stability Estimates for Two 
Finite Hilbert Transforms.”

The immediate consequence of this result is that unique, 
stable reconstruction is possible for all region A in Figure 
10. An inversion formula is not currently known for this 
case, but the information is important for iterative algo-
rithms that blindly search for a solution to the large dis-
cretized version of the linear system. Assuming that the 
discretized system approximates the continuous case, this 
ROI reconstruction result suggests which values of the itera-
tive solution are reliable. 

The One-Sided Finite Hilbert Transform 
Let f : R S R be a smooth function that vanishes outside an 
interval [fL, fR], and let the Hilbert transform g5Hf  be known 
for x [ [hL, hR] where fL , hL , fR , hR. Furthermore, assume 
that the constant K5 11/p 2 ef 1x 2dx is known. Using analyticity 
arguments, it can be shown that f  can be uniquely determined 
on the segment 1hL, fR]. This is the basis for using the DBP with 
the configuration of Figure 10. 

The practical significance of this result is limited if there is 
no control on the stability. Specifically, if the ideal “noise-
free” Hilbert transform g5Hf  is replaced by the measured 
data gP 1 x 2 5 g 1x 2 1 n 1 x 2  where n 1x 2  is the measured noise, 
one needs an upper bound on the reconstruction error 
fP 1x 2 2 f 1x 2  where fP is the solution obtained from noisy 
data. Since no closed form inversion formula is known for 
this problem, stability cannot be analyzed directly. A stabil-
ity estimate can nevertheless be obtained using prior infor-
mation on the noise level and on the values of f  or Hf  in 
the unmeasured interval [fL, hL]. We set 2 fL5 fR5 1 below 
to simplify the notations. In [78], it is assumed that a posi-
tive number M is known such that 

1
p

|g 1x 2 |"12 x2 #
M
2

x [ [21, hL]

and that an upper bound P is available for the measurement 
noise (see [78] for the precise definition of P). With these 
assumptions, the measurement error is bounded by 

"12 x2|f P 1x 2 2 f 1x 2 | # P1M loga x1 1
x2 hL

b
3 a 2P

M log 12/ 112 hL 22 b
v1x2

x [ 1hL, 14.
This equation specifies a minimum rate v 1x 2  at which 

the error tends to zero as a power of the noise P.  This 
power law dependence is important because the use of 

analyticity arguments to prove uniqueness might have 
suggested a worse convergence such as 1/logP. The rate 
of convergence is illustrated in Figure S6, [see [78] for an 
analytic expression for v 1x 2 ] which shows that v 1x 2
decreases as x  moves away from the segment [fR, hR ]
where f  is known to be zero. The convergence is linear at 
the edge of that segment (v 1fR 2 5 1) but degrades as one 
moves away from the region where f  is known a priori. 

The Interior Hilbert Transform, with Prior Knowledge 
A similar stability estimate exists (see [81]) for the problem 
in the section “Inversion of the Interior Hilbert Transform,” 
where f  is known in a subset [kL, kR] of the interior seg-
ment[hL, hR] (  [fL, fR] in which the Hilbert transform Hf
can be recovered using the DBP. Assuming as above an 
upper bound M on |Hf 1x 2 |"12 x2 on the unmeasured seg-
ments[fL, hL] and [hR, fR] and an upper bound P  on the 
measurement noise, an upper bound on the reconstruction 
error in the segments [hL, kL] and [kR, hR] can be obtained, 
with a power law in Pv1x2,  where v 1x 2  tends to zero as 
x S hL or hR, and v 1x 2  tends to one when x  tends to the 
known segment, i.e., x S kL or kR.

STABILITY ESTIMATES FOR TWO FINITE HILBERT TRANSFORMS  

[FIGS6] The minimum error convergence rate.
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However, this one-sided finite Hilbert transform stability 
result has consequences in a more general setting. We con-
sider an arbitrary incomplete data problem for an object with 
known convex support. It has been pointed out [56] that 
every connected component of region A must be convex. The 
one-sided Hilbert transform result combined with the con-
vexity of the object immediately shows that each convex 
component of region A can be uniquely and stably recon-
structed provided it forms a proper subset of a connected 
component of region C (informally, provided the component 
of region A  touches the boundary of the object, and that 
there is some of region C on the other side of the boundary). 
For the other connected components of region A that are 
internal to the object, it is not known to what extent recon-
struction might be possible. Figure 11 illustrates this point 
with a highly artificial example. 

Interest now turns to studying ROI reconstruction for (com-
ponents of) region A internal to the object. In particular, for the 
interior problem one can ask how much information needs to 
be added to restore uniqueness and ensure stability. The next 
section provides one answer to this question. 

INVERSION OF THE INTERIOR HILBERT TRANSFORM
The problem of the interior finite Hilbert transform refers to the 
case 3hL, hR 4 ( 1 fL, fR 2  where, as usual, the unknown function is 
zero outside 3fL, fR4 and its Hilbert transform is known only on 
3hL, hR 4. In this case we know that f 1x 2  cannot be stably recon-
structed for x [ 1hL, hR 2 ,  because such a result could be 
applied to the interior problem, and contradict the known 
 nonuniqueness. 

However, it has recently been shown [79]–[82] that if a small 
region of values of f 1x 2  are known inside the interior region, 
then uniqueness is restored and stable reconstruction can be 
achieved on the interior region. 

Figure 12 illustrates the situation in the image reconstruc-
tion context. The red circle indicates the FOV: only those lines 
crossing the red circle are measured by the scanner, and since 
the red circle doesn’t meet the (known) boundary of the object, 
we are in the situation of the interior problem. In this case, 
region A = region C, and region B is minimal in the sense that 
it is not possible to remove (an open set of) measurement lines 
without reducing region A. Some information must be added to 
the problem to ensure unique reconstruction inside region A.
In some practical imaging situations, it may be reasonable to 
assume a known value for the density at a certain location. If a 
small such region K  of known values exists inside region A
such as illustrated in Figure 12, then a new version of the finite 
Hilbert transform can be formulated that incorporates this 
new information. 

Consider any line passing through region K  (assumed to be 
within region A) as shown in Figure 12. Along this line, we 
identify the intervals 3fL, fR 4, 3hL, hR 4, and 3kL, kR 4, where as 
usual, 3fL, fR 4  is the known support of the object and 3hL, hR 4  is 
the known region of the Hilbert transform of the object along 
the line. Within the interval 3kL, kR4 the values of the density 

 function are known. The containment relation is 
3kL, kR 4 ( 3hL, hR 4 ( 3fL, fR 4, and it was proved that the function 
could be stably reconstructed in 1hL, hR 2 . Applying this reason-
ing to all lines through region K  establishes that all of region A
can be stably reconstructed. However, similarly to the situation 
in the section “Inversion of the One-Sided Finite Hilbert 
Transform,” no explicit inversion formula is known for this case 
of interior data with prior information. 

As a point of terminology, the “interior problem” refers to a 
particular image reconstruction geometry that is known to be 
mathematically unsolvable. Strictly speaking, it is not the 
interior problem that was ‘solved’ by adding new information; 
the supplementary information implied a new mathematical 
problem for which a stable solution exists. It is more conve-
nient to describe this situation differently from the “interior 
problem with prior knowledge.” We first note that knowing 
f 1x 2  for x [ K  is equivalent to f 1x 2 5 0 for x [ K, because 
the known contributions of region K  can be subtracted from 
the measurements. We can now regard region K  as being out-
side the object, and the object boundary as including the hole 

B

A4

A1

A2

A3

[FIG11] A general incomplete data problem. The object is 
convex, and in this example there are four separate connected 
components to (the completely measured) region C. These 
components must be convex. The three components of 
region A that touch the boundary (A1, A2, A3) can be stably 
reconstructed, according to the one-sided Hilbert transform 
result [78], [56]. (Region A2 can also be reconstructed using VFB 
or DBP-H methods.) For internal region A4, it is unknown 
whether stable reconstruction is possible or not. 

[FIG12] The interior problem with small a priori information. 
Measurements are only made along lines passing through the 
red FOV, resulting in the interior problem. However, if the 
density value is known a priori in a small region (region K, in 
blue), then the object density can be stably reconstructed inside 
the FOV. 

fL < hL < kL < kR < hR < fR
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formed by region K. We refer to a convex object with a single 
such hole as a donut. The hole is not considered to be part of 
the donut. 

It is now possible to combine the results on the donut 
problem with those of the one-sided Hilbert transform (see 
the section “Inversion of the One-Sided Finite Hilbert 
Transform”) under a common framework. For convex or 
donuts-shaped objects (with known support in either case) the 
unknown density function can be stably reconstructed on each 
connected component of region A that extends to the object 
boundary. (Strictly speaking, there should be some of region 
C on the other side of the boundary, but in practice this must 
happen if region A touches the boundary. A technically pre-
cise statement is that f 1x 2  can be stably reconstructed (or is 
known to be zero) for x  in any connected component of 
region C that is not entirely contained inside the convex- or 
donut-shaped object.) 

In the situation of the interior problem, an alternative to 
adding information by providing values of f 1x 2  could be to pro-
vide more measurement lines. The diagram of Figure 13 has 
appeared in [61] and [70] (with a reconstructed example in [61]) 
and illustrates an imaging situation where region A is strictly 
internal to the object support, and yet stable reconstruction is 
possible using the Hilbert projection equality (see the section
“The Parallel-Fanbeam Hilbert Projection Equality”). In this 
case, region B is not minimal, as there are many measurement 
lines that can be removed without affecting region A. This 
example shows that the VFB method may be useful to resolve 
other cases of an internal region A. Another such example 
appears in [65]. 

SUMMARY
A significant advance in 2-D image reconstruction theory took 
place at the turn of the century: accurate, robust ROI recon-
struction from incomplete data was found to be possible 
despite intensive research suggesting the contrary during the 
late 1970s through the early 1990s. In this article, we have 
summarized the main advances that have occurred over the 
past eight years. The current situation for 2-D ROI reconstruc-
tion falls into three categories. The first consists of a collection 
of incomplete data problems for which explicit inversion for-
mulas (and analytic reconstruction algorithms) can be applied. 
These are the cases that can be resolved using the VFB or 
DBP-H techniques described in the sections “The Parallel-
Fanbeam Hilbert Projection Equality” and “Differentiated 
Backprojection with Hilbert Filtering.” The second category 
comprises the incomplete data problems for which it is known 
that unique and stable reconstruction is possible but for which 
no explicit inversion formula (or direct analytic reconstruction 
algorithm) currently exists. The last category consists of those 
cases that are not resolved; incomplete data configurations for 
which it is not known which parts of the object, if any, can be 
reliably reconstructed. Figure 14 illustrates this situation in 
broad terms. 

Twentieth century image-reconstruction theory does not 
contradict these new partial-data ROI reconstruction results. It 
was the conclusions extracted from that theory that were incor-
rect. The FBP formulation of Radon’s inversion formula still 
stands and still requires complete sinograms for every possible 
ROI reconstruction. What is now understood is that the 2-D 
Radon transform operator has a special structure that admits 
multiple inversion formulas which use the redundant sinogram 
data in different ways to express the same unique inverse. It is 
these multiple nonequivalent reconstruction formulas that 
allow the phenomenon of partial reconstruction from partial 
data. The arguments for establishing instability of limited-angle 
reconstruction problems still hold in the ROI reconstruction 
arena and are the reason why valid ROI reconstruction can only 
exist in “region A” of the object. Truncated projections was pos-
sibly the area least thoroughly analyzed in the 20th century, the 
main result being the nonuniqueness of the interior problem. 
Even combined with the weight of other evidence, the 

[FIG13] An example where region A is internal to the object, 
yet can be reconstructed stably. Complete fanbeam projections 
are measured on a reduced scan consisting of three segments 
of 65° each. Region A is the red triangle and reconstruction 
was performed using the method of (16) and (17). For all other 
parts of the image, a unique solution exists but the inverse is 
not stable. 

Universe: All 2-D Incomplete Data Problems

Resolved Problems
Explicitly Resolved

VFB
DBP-H

FBP

[FIG14] Schematic description of the current state of the art in 
ROI reconstruction from incomplete data. The exterior box 
represents the set of all possible incomplete sinograms 
(including the trivial case of a sinogram whose set of missing 
measurements is empty). The single case of complete data is 
indicated with the point in the center, labeled “FBP.”
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 conclusion that truncated projections could not be tolerated for 
accurate partial reconstruction was the least solid, and where 
current ROI reconstruction theory has penetrated the furthest. 
If the boundary of the object is not visible in any of the projec-
tion data (the interior problem), then indeed no accurate recon-
struction can be achieved. Consequently all the ROI 
reconstruction examples given so far involve at least some pro-
jections seeing part of the object boundary. Moreover, for convex 
and donut-shaped objects, if part of the boundary is visible from 
all projection angles (i.e., is intersected by “region C”) then ROI 
reconstruction is assured for all object points that form a “visible 
connection” to the boundary in all projections (i.e., reconstruc-
tion is assured in that connected component of region C). The 
unresolved situation is when no part of the boundary is visible 
from all projection angles, but a piece of boundary is sometimes 
visible and sometimes truncated in the projections (region A
doesn’t intersect the boundary). In a few such cases, such as that 
of Figure 13, stable reconstruction has been proved, but this 
case of “sometimes-visible boundaries” is currently where ROI 
reconstruction is the least understood. 

The open challenges now are to resolve the ROI reconstruc-
tion problem for general incomplete data scenarios and to 
have explicit inversion formulas for all cases where ROI recon-
struction is possible. In the coming years, one can anticipate 
new results that steadily build a complete understanding of 
2-D ROI tomography and finally achieve the definitive theory 
for 2-D image reconstruction that was prematurely anticipated 
last century. 
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[A review of the use of iterative algorithms]

M
a g n e t i c 
resonance 
i m   a g i n g 
(MRI) is a 
sophisticat-

ed and versatile medical 
imaging modality.  Tra -
ditionally, MR images are 
reconstructed from the raw 
measurements by a simple 
inverse two-dimensional (2-D) or three-dimensional (3-D) fast 
Fourier  transform (FFT). However, there are a growing number 
of MRI applications where a simple inverse FFT is inadequate, 
e.g., due to non-Cartesian sampling patterns, non-Fourier physi-
cal effects, nonlinear magnetic fields, or deliberate under-sam-
pling to reduce scan times. Such considerations have led to 
increasing interest in methods for model-based image recon-
struction in MRI.

INTRODUCTION
The inverse FFT has served the MR community very well as the 
conventional image reconstruction method for k-space data 
with full Cartesian sampling. And for well sampled non-Carte-
sian data, the gridding method with appropriate density com-
pensation factors [1] is fast and effective. But when only 
under-sampled data is available, or when non-Fourier physical 

effects like field inhomogene-
ity are important, then grid-
ding/FFT methods for image 
reconstruction are subopti-
mal, and iterative algorithms 
based on appropriate models 
can improve image quality, 
at the price of increased 
computation. This article 
reviews the use of iterative 

algorithms for model-based MR image reconstruction. The ref-
erences give pointers to some recent work but are by no means 
a comprehensive survey. To see more citations, visit http://www.
eecs.umich.edu/~fessler/.

MRI BACKGROUND
Any signal processing method aimed at forming images from 
measurement devices such as MRI scanners must consider the 
relevant physics. A survey in IEEE Signal Processing Magazine 
[2] and a book written from a signal processing perspective [3] 
have described MRI physics well. Here we review the physics in 
a somewhat unconventional way that facilitates describing some 
of the “non- Fourier” aspects of MRI.

MRI PHYSICS
Standard MRI scanners use a large static magnetic field

B
S

0 1 rS 2 5 B0 1 rS 2 kS  (1)
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to induce a net magnetization M
S
5Mx i

S
1My j

S
1Mzk

S
 at each 

point in space in the body being imaged, where i
S

, j
S

, and k
S

denote the unit vectors along the x, y, and z axes, respective-
ly, and r

S
5 1x, y, z 2  denotes 3-D spatial coordinates. Ideally, 

the static field strength B0 1 rS 2  would be spatially uniform, i.e., 
a single constant B0. In practice, it is never perfectly uniform, 
due to the unavoidable nonuniformities of all practical coil 
designs and due to the field strength variations that are 
induced by the nonuniform magnetic susceptibilities of differ-
ent tissue types. The electron distributions in different mole-
cules also influence the local magnetic environment 
experienced by an atom’s nucleus, called chemical shift. Some 
types of MRI scans are robust to such spatial variations of B0;
others are sensitive to nonuniformities, necessitating correc-
tion methods.

At equilibrium (which is established within a few seconds 
for a stationary object), the magnetization M

S
 is aligned with 

the applied static field and its magnitude is proportional to the 
product of B0 1 rS 2  and the object-dependent local density of 
(predominately) hydrogen protons or “spins.” This proton den-
sity alone is of only modest interest in MRI; in practice one 
applies time-varying magnetic fields B

S 1 rS, t 2  that induce time-
varying changes in the magnetization

M
S 1 rS, t 2 5Mx 1 rS, t 2 i

S
1My 1 rS, t 2 j

S
1Mz 1 rS, t 2 kS. (2)

These changes depend on time constants (tissue-dependent 
relaxation parameters) and other factors, and the goal in MRI 
is to form images of aspects of this magnetization. By manipu-
lating the applied field B

S
0 1 rS, t 2  appropriately, sometimes in 

conjunction with injected or inhaled contrast agents, one can 
examine a multitude of different tissue properties.

An MRI scan consists of one or more alternations between 
two stages: excitation and readout. During the excitation stage, 
the applied magnetic field B

S 1 rS, t 2  is designed to tip the mag-
netization vectors M

S
 within some slice or slab away from equi-

librium, so that they have a component in the transverse plane, 
i.e., the 1x, y 2  plane. It is convenient to represent this trans-
verse component mathematically using a complex function 
defined as follows:

 M 1 rS, t 2 ! Mx 1 rS, t 2 1 i My 1 rS, t 2 , (3)

where i !"21. Note that the field components Mx  and 
My  are real physical quantities; the “transverse magnetiza-
tion” M 1 rS, t 2  is complex solely by definition. The excitation 
process can be quite complicated to model and is beyond 
the scope of this article. See [2] for an introduction to the 
role that signal processing plays in the design of excitation 
pulses and [4] for some recent model-based RF pulse 
design methods.

During the readout stage, the applied field B
S 1 rS, t 2  is 

manipulated in ways that help elucidate the transverse 
magnetization M 1 rS, t 2 . For image reconstruction, it is 
essential to model the effects of the applied field on the 

transverse magnetization. The precise relationship is gov-
erned by the Bloch equation [2]. For most image recon-
struction purposes, it suffices to consider just two aspects 
of the full relationship: precession and transverse relax-
ation. The most important equation in MRI is the Larmor 
relation: v 5 g| B

S
| , which states that the magnetization 

precesses (around the axis of the applied field) at a frequen-
cy v  that is proportional to the magnitude of the applied 
field. The constant of proportionality g  is called the gyro-
magnetic ratio and is about 42.6 MHz/T for hydrogen pro-
tons. During a readout, only the longitudinal component of 
B
S

 is varied usually, i.e.,

B
S 1 rS, t 2 5 Bz 1 rS, t 2 kS, (4)

so the magnetization precesses around k
S

, i.e., within the trans-
verse plane. This property is why the complex representation (3) 
is convenient, because precession can be expressed using a com-
plex phase in this form. In general, the applied longitudinal field 
strength Bz 1 rS, t 2  varies both spatially and temporally, so the 
Larmor relationship describes the instantaneous frequency at a 
given spatial location

v 1 rS, t 2 5g Bz 1 rS, t 2 . (5)

Without loss of generality, let t5 0 be the time when the excita-
tion pulse is completed, and consider some time point t . 0
during the readout. The precession of the transverse magnetiza-
tion between time zero and time t corresponds to a net phase 
that is the integral of the instantaneous frequency (5), i.e., ide-
ally we would have

 M 1 rS, t 2 5M 1 rS, 0 2expa2i3
t

0
v 1 rS, t r 2dt rb.

In practice, microscopic variations in the magnetic field 
cause the spins within a given voxel to become out of phase 
over time. So the transverse magnetization vector’s magni-
tude decreases approximately exponentially with a time con-
stant T 2

*. Accounting for this decay, an accurate model for the 
temporal evolution of the transverse magnetization during a 
readout is

 M 1 rS, t 2 5 f 1 rS 2e2t/T2
*1 rS 2expa2 ig3

t

0
Bz 1 rS, t r 2dt rb, (6)

where f 1 rS 2 ! M 1 rS, 02  denotes the object’s transverse magne-
tization immediately after excitation. A typical goal in MRI is 
to form an image of f 1 rS 2 . The properties of f 1 rS 2  depend not 
only on spin density, but also on the type of excitation used. 
Note that for simplicity of exposition, we focus here on the 
case where the object is static so that f 1 rS 2  is not a function of 
time t. Generalizations to dynamic imaging are very active 
research areas in MR image reconstruction.

The relaxation factor T2
* varies spatially, and often is on the 

order of 10 ms. This relatively rapid decay is a significant limi-
tation in MRI. If T 2

* were longer, then a signal excitation stage 
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followed by a (lengthy) readout 
stage could be sufficient to 
form a high-resolution image 
of f 1 rS 2 . In practice, the rapid 
decay  limits how much spatial 
information can be recorded in a single readout stage, so such 
“single shot” imaging, such as echo-planar imaging (EPI) [5], 
provides only modest spatial resolution. Therefore, high-reso-
lution imaging uses multiple alternations between excitation 
stages and readout stages, each with different variations of the 
applied field Bz 1 rS, t2 .
DATA ACQUISITION: THE MR SIGNAL
By Faraday’s law, the time-varying magnetization M 1 rS, t2  will 
induce an electromotive force (emf) in a nearby coil. The emf 
will be proportional to the volume integral of the time deriva-
tive of the magnetization M 1 rS, t2  multiplied by the coil 
response pattern c 1 rS 2 . The resulting electrical potential v 1t 2
across the receive coil is

v 1t 2 5 reala3c 1 rS 2 d
dt

M 1 rS, t 2dr
Sb, (7)

where real(·) denotes the real part of a complex number. The 
coil response c 1 rS 2  generally decreases with distance from the 
coil. If uncorrected, this nonuniformity causes spatial variations 
in signal strength that can be a challenge for image processing 
methods like segmentation algorithms. Numerous correction 
methods have been developed.

Because the time constant T2
* is on the order of millisec-

onds whereas the phase variations in (6) are many MHz, it is 
very reasonable to use a narrow-band approximation when 
evaluating the time derivative of M 1 rS, t 2  as needed in (7). The 
time derivative of a narrow-band signal is well approximated 
by a constant scaling factor d/dtM 1 rS, t 2 < c0 M 1 rS, t 2 . We 
absorb this constant into the coil response pattern and rewrite 
(7) as

v 1t 2 5 reala3c 1 rS 2  M 1 rS, t 2  dr
Sb. (8)

The receive coil’s signal is amplified and demodulated using 
some center frequency v0. Ideally, one would use v05g B0 if 
the static magnetic field had uniform strength B0. Usually 
quadrature demodulation is used, yielding separate in-phase 
I 1t 2 and quadrature Q 1t 2 baseband signals. In the literature, 
the demodulated “MR signal” s 1 t 2 is defined (implicitly) as

s 1t 2 ! I 1t21 iQ 1t25 lowpass 1eiv0tv 1t 225 eiv0t3c 1 rS 2M 1 rS, t2dr
S

,
 (9)

where the low-pass operation selects the baseband component 
of the demodulated signal. This complex analog signal is just a 
mathematical definition; in practice, the I 1t 2 and Q 1t 2 signals 
are each sampled and digitized yielding two digital signals. (One 
can use two separate analog-to-digital (A/D) converters, or a sin-
gle A/D converter running at twice the normal rate to avoid I/Q  

imbalance.) Digitally, these two 
signals can be combined and 
stored as complex values, i.e.,
we record samples

I 1mDT 2 1 iQ 1mDT 2 , m5 1, c, nd,

where DT denotes the sampling rate (typically around 1 ms) 
and nd denotes the number of recorded samples, typically 
64–512 for a given readout stage. Again, the physical quanti-
ties are real, but complex quantities are defined in terms of 
those physical quantities for convenience. (In some sys-
tems, digital demodulation is used, but the modeling 
remains identical.)

SIGNAL MODEL
To improve signal-to-noise ratio and reduce acquisition 
times, the use of multiple receive coils has become increas-
ingly popular in MRI. Although originally called phased array
imaging [6], a term that resonates with other signal process-
ing applications involving multiple receivers, today the use 
of multiple receive coils in MRI is usually called parallel 
imaging [7].

Let cl 1 rS 2  denote the sensitivity (response pattern) of the lth
coil, for l5 1, c, L, where L denotes the number of coils. Let 
sl 1t 2 denote the demodulated “MR signal” associated with the 
lth coil, defined as in (9). Substituting (6) into (9) and simplify-
ing yields the following general forward model for the MR signal 
associated with the lth coil

sl 1t 2 5 3cl 1 rS 2 f 1 rS 2e2t/T2
*1 rS 2e2if1rS,t2 dr

S
, (10)

where the space- and time-varying phase is

f 1 rS, t 2 ! 3
t

0

1g Bz 1 rS, t r2 2v0 2dt r. (11)

In practice, multiple such signals are recorded, one for each exci-
tation/readout pair (“shots”). For simplicity of notation, we con-
sider “single shot” imaging; the extension to multiple shots is 
conceptually straightforward but notationally cumbersome. Note 
that the phase variations (11) are common to all receive coils; 
only the coil response patterns 5cl 1 rS 2 6  differ between coils.

MEASUREMENT MODEL
The recorded measurements in a MR scan consist of noisy samples 
of the MR signal (10)

yli5 sl 1ti 2 1 eli, i5 1, c, nd, l5 1, c, L, (12)

where yli denotes the ith sample of the lth coil’s signal at time 
ti and nd  denotes the number of time samples. Usually the ti

values are equally spaced, and often there are one or more time 
values where the signal is particularly strong due to alignment 
of the magnetization’s phases; these values are called echo 
times. The measurement errors eli are very well modeled by 

NOTIONS OF SPARSITY 
HAVE DEEP ROOTS IN STATISTICAL 

SIGNAL PROCESSING. 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [84]   JULY 2010

additive, complex, zero-mean, 
temporally white Gaussian noise 
[8]. However, there can be cou-
pling of the noise values between 
different coils for the same time 
points, i.e.,

 Cov5eli,ekj6 5Slkd[i2 j 4 , (13)

where d denotes the Kronecker impulse, and the L 3 L matrix 
S characterizes the noise covariance between coils [7].

LINEAR RECONSTRUCTION PROBLEM
Using the measurement model (12) and the signal model (10), 
the “typical” image reconstruction problem in MRI is to esti-
mate the object f 1 rS 2 from the measurement vector 
y5 1y1, c, yL 2 , where yl5 1yl1, c, yl,nd

2 . (All vectors are 
column vectors here.) We first consider model-based image 
reconstruction for this “basic” linear formulation. Because par-
allel imaging is of considerable interest, we continue to consider 
the general case of L receive coils. A standard single receive coil 
is a simple special case.

This is an ill-posed problem because the given measure-
ments y are discrete whereas the object f 1 rS 2 is an unknown 
continuous-space function. To facilitate parametric estimation, 
we approximate the object f 1 rS 2  using a “finite series expansion” 
as follows:

f 1 rS 2 5 a
N

j51
fjb 1 rS2 r

S
j 2 , (14)

where b 1 # 2  denotes the object basis function, r
S

j denotes the 
center of the jth translated basis function, and N is the 
number of parameters. Such approximations are classic in 
the tomographic image reconstruction literature [9] and are 
slowly taking root in the MR community. Minimum L2 norm 
methods can postpone the discretization (14) until the final 
step of displaying the image, but it is unclear if this approach 
provides image quality benefits that outweigh its computa-
tional requirements. For simplicity, hereafter we use rect 
basis functions b 1 rS 2 5 rect 1 rS/D 2 , i.e., square pixels of di-
mension D, so N is the number of pixels, or voxels in 3-D 
scans. Many other possible basis function choices can be 
considered, all of which are imperfect because the true ob-
ject never satisfies the parametric model (14) exactly. 
Nevertheless simple basis functions can provide useful ap-
proximations.

Substituting the basis expansion (14) into the signal model 
(10) and simplifying leads to the discrete forward model

sl 1ti 2 5 a
N

j51
alij fj, (15)

where the elements 5alij6  of the system matrix Al associated
with the lth coil are given by

alij5 3b 1 rS2 r
S

j 2cl 1 rS 2e2ti /T2
*1Sr 2e2if1rS, ti2 dr

S
. (16)

In practice the basis func-
tions are usually highly local-
ized (e.g., voxels), so “center 
of voxel” approximations like 
the following are nearly always 
used, often implicitly

alij < cl 1 rSj 2e2ti /T2
* 1rSj 2e2if1 rSj , ti2 . (17)

For exceptions, see [10].
Typically the decay due to T 2

* is ignored, or it is assumed 
implicitly that the total readout time tnd

2 t1 is small relative 
to T 2

*  in which case one can make the approximation 
e2ti /T

*
21 rS2 < e2t1/T2

*1rS2 . Under this approximation, we can absorb 
the T2

*-weighting effect of e2t1/T2
*1 rS 2 into the unknown image f 1 rS 2 .

Combining (12) and (15) in matrix-vector form yields

yl5 Al f1 el,

where f5 1 f1, c, fN 2  is the vector of parameters (pixel 
 values) that we wish to estimate from the data y. Stacking up 
all L measurement vectors as y5 1y1, c, yL2  and defining 
the 1nd L 2 3 N  system matrix A5 1A1, c, AL 2  yields the 
linear model

y5 Af1 e. (18)

At first glance this linear model appears amenable to a vari-
ety of iterative solution methods. However, a significant chal-
lenge that arises is that in general the elements of A can be 
quite complicated in the form above, yet A is too large to store 
for typical problem sizes. Most iterative algorithms require 
matrix-vector multiplication by A and its transpose; there 
are fast algorithms for these operations (without storing A
explicitly) in many special cases of interest [10], [11].

Thus far we have allowed the phase function f 1 rSj, ti 2  to be 
quite general, without the traditional focus on “Fourier 
 encoding.” Recently there has been interest in investigating 
nonlinear magnetic field variations Bz 1 rS, t 2  in (4), and recon-
struction algorithms have been proposed that use much of the 
generality in (16) [12], [13]. These are currently specialized 
research topics, so we now focus on the more common case of 
linear field gradients.

FOURIER ENCODING
In typical MR scanners, the longitudinal component of the 
applied field Bz 1 rS, t 2  in (4) consists of three components

Bz 1 rS, t 2 5 B01DB0 1 rS 2 1G
S 1t 2 # r

S
. (19)

The constant B0 denotes the advertised field strength of the 
main static field. The function DB0 1 rS 2  denotes the spatial devi-
ations of the field strength from this nominal value. This 
 function is often called a field map, and in general, it is 
unknown, but it can be estimated by suitable types of 

MODEL-BASED METHODS THAT 
ACCOUNT FOR THOSE [PHYSICAL] 

EFFECTS ARE PROVING TO BE 
BENEFICIAL FOR IMPROVING 

IMAGE QUALITY. 
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 acquisitions and data processing methods [14]. The field gradi-
ents G

S 1t 2 5G
S

x 1t 2 j
S
1G

S
y 1t 2 j

S
1G

S
z 1t 2 j

S
 consist of three user-

controlled functions that are the historical key to providing 
spatial information in standard MR imaging. Many different 
types of MR scans are possible by changing G

S 1t 2 .
Substituting (19) into (11) using v0 ! gB0 and simplify-

ing yields

f 1 rS, t 2 5 3
t

0
g DB0 1 rS 2 1gG

S 1t 2 # r
S

 dt

or equivalently

 e2if1 rS,t 25 e2iDv01rS2t e2i2pk
S 1t2 # rS , (20)

where Dv0 1 rS 2 ! g DB0 1gS 2  denotes the off-resonance frequen-
cy and the k-space trajectory is defined by

k
S 1t 2 ! 1

2p3
t

0
gG
S 1t 2  dt. (21)

Usually the phase accrual e2iDv01 rS 2 t due to off resonance is 
undesirable and can distort reconstructed images if ignored. 
Therefore some image reconstruction methods, particularly in 
fMRI, account for its effects [10]. In some cases, the map 
Dv0 1 rS 2  is found from a separate “prescan,” in other cases it is 
estimated jointly with f  [15]. In chemical shift imaging, e.g.,
to separate fat and water components, the term Dv0 1 rS 2
includes both useful information about the chemical shift 
effect as well as the undesirable variations due to field inho-
mogeneity [16].

For the linear field gradients (19), substituting (20) into (17) 
yields simpler expressions for the system matrix

alij < cl 1 rSj 2e2z 1rSj2 ti e2i2pk
S 1ti2 # rSj , (22)

where we define the “rate map” z 1 rS 2  by combining the relax-
ation and field maps

z 1 rS 2 ! 1/T 2
* 1 rS 2 1 iDv0 1 rS 2 . (23)

When this rate map is assumed to be zero, i.e., if relaxation 
and off resonance are ignored, then alij is the product of a 
Fourier encoding matrix having elements e2i2pk

S1ti2 # rSj  with a 
diagonal sensitivity encoding matrix having elements cl 1 rSj 2 .

If the k-space sample locations k
S 1ti 2  lie on an appropriate 

subset of a Cartesian grid, then FFT operations provide effi-
cient multiplication by A and its transpose. If non-Cartesian 
k-space sampling is used, then a nonuniform FFT (NUFFT) is 
needed [17].

When z 1 rS 2 in (22) is nonzero, then the elements (22) no lon-
ger correspond to a standard Fourier transform. Approximations 
are needed to provide fast computation of matrix-vector products. 
In particular, often one can approximate the exponentials in (17) 
using an additively separable form

 e2z1rSj 2ti < a
k

bik ckj

for various choices for the basis functions bik and coefficients ckj

[11]. With this type of approximation, we can rewrite matrix-
vector multiplication as follows:

3Al f 4i < a
k

bika
N

j51

1ckj cl 1 rSj 2 fj 2e2i2pk
S 1 ti2 # rSj .

The inner sum is simply a FFT or NUFFT so this approach is 
relatively fast. Free software for this is available [18].

RECONSTRUCTION COST FUNCTION
Having specified the linear model (18), we now turn to solution 
methods. Because the noise in MRI measurements is Gaussian, 
a natural approach is to estimate f  by minimizing a regularized 
least-squares cost function

f̂ 5 arg min
f

C 1 f 2 , C 1 f 2 !   || y2 Af ||21 bR 1 f 2 . (24)

For a single coil, the noise variance in the k-space data is 
white (uncorrelated with uniform variance), so the usual 
Euclidian norm || # || is appropriate. For parallel MRI, noise is 
stationary across time samples 1 i 2 , but the norm should 
include the inverse of the L 3 L  covariance matrix S  in 
(13) that describes the noise correlation between receive 
coils [7].

If the k-space samples lie on an equally spaced grid 
(Cartesian sampling) with appropriate sample spacings relative 
to the object field of view, and if the rate map z 1 rS 2  is zero (i.e., 
we ignore relaxation and field inhomogeneity), and if we consid-
er just a single coil 1L5 1 2  and treat the sensitivity pattern as 
uniform, i.e., c1 1 rS 2 5 1 , then the system matrix Al is orthogo-
nal. In this special case, no regularization is needed and 
A215 1/N A r  and the solution is simply f̂ 5 1/N Ary, which 
can be evaluated by an inverse FFT. This is the most common 
MR image-reconstruction method. However, if any of these con-
ditions do not hold, then typically the system matrix A is not 
well conditioned, and the unregularized LS solution can lead to 
undesirable noise amplification. To avoid this problem, some 
form of regularization is needed.

REGULARIZATION
An open problem in most image reconstruction problems, 
including MRI, is how to best choose the regularizer R 1 f 2 . If 
this term is not included, then the image estimate f̂  will suffer 
from noise and artifacts for under-sampled and/or non-Cartesian 
data, because this inverse problem is ill conditioned. The 
approach for iterative reconstruction that has been adopted in 
commercial positron emission tomography scanners is to use 
an unregularized algorithm, initialize it with a uniform image, 
stop iterating just as the image gets unacceptably noisy, and 
then perhaps apply a bit of post-filtering to reduce the noise. 
One could adopt a similar approach for MR imaging. However, 
introducing regularization can ensure that the iterative algo-
rithm converges to a stable image and can enforce prior infor-
mation that improves image quality particularly for 
under-sampled data.
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The simplest choice is Tikhonov regularization R 1 f 2 5  || f ||2

or R 1 f 2 5  || f2 f ||2, where f  is some prior or reference image 
(possibly zero). The disadvantage of this choice is that it biases 
the estimate towards the reference image f . In particular, if the 
reference image is zero, then all pixel values in f̂  are dimin-
ished towards zero, possibly reducing contrast.

Another choice is a quadratic roughness penalty function, 
which in one-dimensional (1-D) would be written

 R 1 f 2 5 a
N

j52
| fj2 fj21 |2. (25)

This choice biases the reconstruction towards a smooth image 
where neighboring pixel values are similar. It is convenient for 
minimization [10], but it has the drawback of smoothing image 
edges, particularly if the regularization parameter b in (24) is 
too large. One can prove that 
using (25) guarantees that the 
cost function (24) has a unique 
minimizer.

More recently, total varia-
t ion methods have been 
 investigated for MR image 
reconstruction [19]. In 1-D, these methods replace the 
squared differences between neighboring pixels above with 
absolute  differences

 R 1 f 2 5 a
N

j52
| fj2 fj21 |. (26)

In 2-D continuous space, the analogous functional is

3 0 0 =f 0 0d r
S
5 33Å ` '

'x
f 1 r

S 2 ` 21 ` '
'y

f 1 r
S 2 ` 2dx dy.

The advantage of this type of regularization is that it biases the 
reconstructed image towards a piecewise smooth image, instead 
of a globally smooth image, thereby better preserving image 
edges. However it is harder to minimize and can lead to the 
appearance of “blocky” texture in images. Numerous alterna-
tives of the form

 R 1 f 2 5 a
N

j52
c 1 fj2 fj21 2

for various choices of the “potential function” c 1 # 2  have been 
proposed in the imaging literature. Many of these compromise 
between the quadratic case (25) and the absolute difference case 
(26), for example the hyperbola

c 1t 2 5"11 | t/d |22 1 (27)

is approximately quadratic near zero, which aids noise reduc-
tion, yet approximately linear away from zero, which helps 
preserve edges.

ALGORITHMS
Iterative algorithms are needed to minimize (24). For differen-
tiable regularizers such as (25), the conjugate gradient algo-
rithm is a natural choice [10]. For nondifferentiable regularizers 
like (26), more sophisticated algorithms are needed and this is 
an active research area [20].

RECONSTRUCTION CHALLENGES
Although a variety of useful problems can be solved in MRI 
using the formulation (24), there are numerous challenges that 
provide research opportunities.

REGULARIZATION PARAMETER SELECTION
A practical challenge with regularized methods is selection of 
the regularization parameter b in (24). For quadratic regular-

ization, there is a well-devel-
oped theory for choosing b in 
terms of the desired spatial res-
olution properties of the recon-
structed image [21]. This theory 
extends readily to MR imaging 
with reasonably well sampled 

trajectories (and to parallel imaging with reasonable accelera-
tion factors) for which the point spread function (PSF) of the 
reconstructed image is relatively close to a Kronecker impulse 
so that simple measures like full width at half maximum 
(FWHM) are reasonable resolution metrics. For highly under-
sampled trajectories, the PSF can have “heavy tails” due to alias-
ing effects, and more investigation is needed to extend the above 
methods to MR applications.

For nonquadratic regularization such as the total variation 
method (26), the analysis in [21] is inapplicable so one must 
resort to other methods for choosing b. Statisticians often use 
cross validation for choosing regularization parameters, with a 
goal of finding the parameter that minimizes the mean-squared 
error (MSE) between f̂  and the unknown f . However, MSE is 
the sum of variance and bias squared, and where bias is related 
to spatial resolution and artifacts, and it is unclear whether an 
equal weighting of noise variance and bias (squared) is optimal 
from an image-quality perspective in medical imaging.

Another method for choosing b is the “L-curve” method. 
This method is expensive because it requires evaluating f̂  for 
several values of b, and it has some theoretical deficiencies [22].

In summary, choosing b for nonquadratic regularization 
remains a nontrivial issue in most ill-posed imaging problems 
including MRI, and remains an active research area [23].

PARTIAL K-SPACE METHODS
If the object f 1 rS 2  were real, then its Fourier transform would 
be Hermitian symmetric so in principle only half of k-space 
would need to be sampled. In practice, the magnetization (3) is 
complex due to a variety of physical effects. However, in many 
cases the phase of M 1 rS, t 2  can be assumed to be a smooth func-
tion. This property has led to a variety of partial k-space meth-
ods where one samples a bit more than half of k-space, then 

RECENTLY IT HAS BECOME VERY 
POPULAR TO EXPRESS PRIOR 

INFORMATION IN TERMS OF SOME TYPE 
OF SPARSITY OF THE OBJECT.
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estimates the phase from the central portion of k-space 
 (corresponding to low spatial frequencies), and then uses this 
estimated phase to reconstruct the entire image [24]. Such 
methods are used routinely in many types of MR scans.

UNDER-SAMPLED K-SPACE DATA
The need for some type of regularization is essential when the 
k-space data is under sampled, i.e., when the number of mea-
surements Lnd  is less than the number of unknown voxels N .
In MRI, the scan time is roughly proportional to the number of 
measurements, so collecting fewer samples can reduce scan 
time, which is particularly desirable in dynamic imaging.

In the broader field of tomographic image reconstruction, 
there is a long history of using prior information, such as 
assuming objects are piecewise smooth, to reconstruct images 
from an under-sampled set of 
projection views, e.g., [25]. 
Many of these methods involve 
cost functions of the form (24) 
with a suitable system matrix 
A  for the application and 
appropriate regularizers R 1 f 2
that capture prior information about the object.

Recently it has become very popular to express prior infor-
mation in terms of some type of sparsity of the object. Notions 
of sparsity have deep roots in statistical signal processing [26]. 
Sparsity is especially apparent in MR angiography. The moniker 
of compressed sensing or compressive sampling has become 
widespread for such techniques, and recently entire sessions at 
MR conferences have been devoted to this topic [20]. Some 
compressed sensing formulations ignore the noise in the data. 
In the presence of noise, a typical formulation is

 arg min 
f

||Cf ||1 s.t.   || y2 Af ||2 # P ,

where C  transforms the image f into a domain (such as wavelet 
coefficients) where one postulates that the signal is sparse.

Often this optimization problem is solved using a Lagrange 
multiplier approach

 arg min
f

7 y2 Af 7 221 b 7 Cf 7 1,
which corresponds to a particular regularizer in (24). Rarely is 
the ,1 norm implemented exactly; in practice usually a continu-
ously differentiable approximation is used, such as

0 0 v 0 0 1 < a
i

1"| vi |
21d22d 2  (28)

for some small value of d . 0. This approximation is equivalent 
to the hyperbola (27) used frequently for edge-preserving image 
reconstruction. Nonconvex methods that enforce sparsity even 
more strongly are also under investigation. In the usual case 
where A corresponds to an under-sampled discrete Fourier 
transform (DFT), a variety of algorithms are available that have 
numerous potential applications in MR [20]. Challenges with 

this approach include choosing the sparsifying transform C  and 
regularization parameters b and d appropriately. Furthermore, 
when d is small, the regularizer (28) has very high curvature 
near zero, which can slow convergence.

NONLINEAR RECONSTRUCTION PROBLEMS
The linear image reconstruction problem (24) is just one of 
many estimation problems of interest in MRI. Returning to the 
elements of the system matrix (22), there has been research on 
estimating essentially every component therein, as summa-
rized below.

FIELD MAP ESTIMATION
For scans with long readout times, the effect of field inhomo-
geneity Dv0 in (22) is important. In practice, the field map 

v 1 rS 2 is not known a priori but 
rather it must be estimated 
from noisy MR scans. One can 
examine the phase differences 
between two scans having dif-
ferent echo times to determine 
Dv0 . If these two scans have 

short readouts, then there are simple image-domain methods 
for estimating Dv0, which is known as B0 field mapping [14]. 
Errors in the field map estimates may cause artifacts in recon-
structed images that are based on models like (22).

In addition, object motion that occurs between the field 
map scans and subsequent scans of interest, e.g., in fMRI, will 
lead to an inconsistency between the actual scan data and the 
assumed model (22) used by the reconstruction algorithm. 
This possibility has motivated the development of dynamic 
field mapping methods that estimate the field map separately 
for each frame in a dynamic study, e.g., [15]. For scans with 
long readout durations, the appearance of Dv0 in a complex 
exponential in (22) makes this a somewhat complicated non-
linear estimation problem.

RELAXATION MAP ESTIMATION
In some MR applications, it is useful to estimate tissue relax-
ation parameters, particularly T2 or T 2

*, on a pixel-by-pixel 
basis. One approach to measuring such relaxation parameters 
is to acquire a “baseline” scan of the object and then acquire 
one or more additional scans having different echo times. One 
then reconstructs images from each of those scans and then 
performs linear regression on a voxel-by-voxel basis using the 
logarithm of the image voxel values. This approach can be ade-
quate if the readout durations are sufficiently small. But for 
acquisitions with long readouts, the effect of time ti in the 
e2z1 rSj 2ti in (22) should be considered, i.e., we should account 
for relaxation during the signal readout. This requires meth-
ods that estimate the relaxation map directly from the k-space 
data. These are more challenging nonlinear estimation prob-
lems because T 2

* appears in an exponent in (22). Several meth-
ods for jointly estimating T 2

* , Dv0 , and f 1 rS 2  have been 
investigated [27].

THE LINEAR IMAGE RECONSTRUCTION 
PROBLEM IS JUST ONE OF MANY 

ESTIMATION PROBLEMS OF 
INTEREST IN MRI.
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SENSITIVITY MAP ESTIMATION
The coil sensitivity patterns cl 1 rS 2 in (22) also must be deter-
mined for parallel imaging based on sensitivity encoding. 
Normally this is done by acquiring well-sampled data both 
with local receive coils and with a reference body coil and 
dividing the two [7]. Acquiring the extra reference data can 
be inconvenient, so normalizing by the square root of the 
sum of squares of the local receive coils is also used. A variety 
of other estimation methods have been proposed, including 
methods that jointly estimate the sensitivity maps 5cl 1 rS 2 6
and the image f 1 rS 2 [28]. Note 
that if f 1 rS 2  were known, then 
the problem of estimating 
cl 1 rS 2 would be a linear esti-
mation problem because cl 1 rS 2
appears as a linear scaling in 
(22). But when both f 1 rS 2 and 
cl 1 rS 2 are to be estimated, the 
model is bilinear because f 1 rS 2 and cl 1 rS 2 appear as a product 
in (10). This complicates joint estimation.

TRAJECTORY MAPPING
The k-space trajectory k

S 1 ti 2 , defined as an integral of the gradi-
ent waveforms in (21), should be calibrated carefully to ensure 
that the system model (22) is accurate. In practice, the field 
gradients induced by the gradient coils in the scanner are not 
exactly proportional to the waveforms applied to those coils due 
to eddy currents. Therefore the physical k-space trajectory real-
ized in the system can depart somewhat from the desired k-
space trajectory. These differences can degrade the 
reconstructed image, particularly for non-Cartesian trajectories 
with long readout durations. Therefore, a variety of techniques 
have been developed for mapping the actual k-space trajectory 
experimentally.

WITHIN-VOXEL GRADIENTS
The model (23) treats the field inhomogeneity within each voxel 
as being a constant, ignoring within-voxel gradients of the off-
resonance map. However, these gradients can be significant in 

functional magnetic resonance imaging (fMRI) based on the 
BOLD effect [29]. Accurate reconstruction of signals near air-
tissue interfaces requires compensation for these within-voxel 
gradients, which complicates the reconstruction method [30].

EXAMPLE
To illustrate the capabilities of model-based image reconstruc-
tion methods for MRI, we simulated k-space data for a four-
shot EPI sequence with matrix size 128 × 128 and 5 ms
sampling so the readout duration was 27.3 ms per shot. The 

field map D B0 1 rS 2 appears in 
Figure 2 of [14] and is based 
on a brain slice above the 
sinuses and ear canals where 
susceptibility effects occur. 
Figure 1 shows the true image 
used in the simulations and 
images from three different 

reconstruction methods. The “uncorrected” reconstruction 
simply uses an inverse 2-D FFT, with no consideration of field 
inhomogeneity. The field inhomogeneity causes spatial distor-
tion in the read-out (vertical) direction (that increases NRMSE 
dramatically), as well as significant intensity artifacts above the 
ears and sinuses where the susceptibility effects are largest. 
The  classical conjugate phase re  con  struction method, which 
corresponds to Ary in this single-coil case, reduces the spatial 
distortion but the intensity artifacts persist. Applying 15 itera-
tions of a conjugate gradient algorithm with a monotonic line 
search [11] to the cost function (24) with the edge-preserving 
hyperbola (27) yields the right-most image in Figure 1. This 
model-based image reconstruction method yields the lowest 
RMS error, but it requires about 30 times more computation 
than the noniterative conjugate phase method [11] because 
each iteration requires multiplication by A and A r . The soft-
ware that generated this figure is available online [18].

SUMMARY
Image reconstruction is not a single problem in MRI but rath-
er is a wide family of problems depending on what physical 

True Uncorrected Conjugate Phase MBIR

NRMSE = 143% NRMSE = 13% NRMSE = 5% 0

2

4

6

8

[FIG1] Comparison of model-based image reconstruction with convention methods.

DESPITE OVER THREE DECADES 
OF MR RESEARCH, THERE REMAIN 
CHALLENGING AND INTRIGUING 

PROBLEMS IN MR IMAGE 
RECONSTRUCTION.
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effects are included in the signal model. The most widely stud-
ied case, particularly in the signal processing community, is 
when nearly all physical effects are disregarded and the system 
model consists solely of sampled of the Fourier transform of 
the object. This basic model is amenable to familiar signal pro-
cessing tools and is applicable to many MR scans. But there 
are also many interesting applications where other physical 
effects are relevant, and model-based methods that account for 
those effects are proving to be beneficial for improving image 
quality. Model-based methods themselves depend on estimates 
of a variety of model parameters, leading to interesting prob-
lems where those parameters are determined either by sepa-
rate calibration scans or by jointly estimating the image and 
those parameters. Despite over three decades of MR research, 
there remain challenging and intriguing problems in MR 
image reconstruction.
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[Multichannel sampling theory meets spin physics]

M
a g n e t i c 
resonance 
i m a g i n g 
(MRI) is a 
relatively 

slow imaging technique that 
has limited its application to 
imaging of time-varying 
objects. Developing fast MRI 
methods has been an active 
research area for the last 
three decades. Recently, par-
allel imaging using phased 
array coils has provided another avenue to significantly 
speed up the MRI process. In this article, we describe par-
allel MRI from a signal processing perspective, invoking 
the multichannel sampling theory (and filter bank theo-
ry). We review several basic reconstruction algorithms 
and discuss some practical issues and outstanding signal 
processing problems.

INTRODUCTION
MRI is a tomographic imaging technique based on the well-
known nuclear magnetic resonance (NMR) phenomenon. 
An intuitive understanding of the NMR phenomenon can be 
gained by considering the 1H  nuclei (protons) in an object 
to be imaged. The proton is a positively charged particle 
that has an intrinsic angular momentum (called spin) and a 
microscopic magnetic field surrounding it (characterized by 

a magnetic moment vec-
tor). Under the thermal 
equilibrium condition, the 
object displays no macro-
scopic magnetism due to 
destructive interference 
among all the magnetic 
moment vectors. However, 
when placed in an exter-
nal magnetic field ( B

S
0 ), 

the protons will be polar-
ized, giving rise to a bulk 
magnetization vector M

S

pointing in the direction of B
S

0.  The thermal equilibrium 
value of M

S
 is given, to a first-order approximation by 

M05
g2U2B0Ns

4kBTs
, (1) 

where g is the gyromagnetic ratio of proton (2.675 3 108 rad/
s/T), U is the Planck constant h (6.6 3 10234 J-s) divided by 
2p, kB is the Boltzmann constant (1.38 3 10223 J/K), Ns is 
the total number of polarized protons in the object, and Ts is 
the absolute temperature of the object. When the “magne-
tized” object is further excited by another field oscillating at 
the Larmor frequency (v05gB0) of the protons, the bulk 
magnetization M

S
 will be tilted away from the B

S
0 field. The 

tilted M
S

 will then precess about the B
S

0 field (known as free 
precession), and consequently induce a voltage signal (known 
as the NMR signal) in a radio frequency (RF) receiver coil 
according to Faraday’s law of induction 
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v 1t 2 52 d
dt3M

S 1 rS, t 2 # B
S

c 1 rS 2dr
S

,  (2) 

where B
S

c 1 rS 2  represents the detection sensitivity of the receiver 
coil at spatial location r

S
.

In conventional MRI systems, both signal excitation and 
detection are performed using a single RF channel, which is 
assumed to have uniform sensitivity over the region of interest. 
In this case, the received NMR signal (after proper simplifica-
tions and processing such as filtering and demodulation) can be 
expressed as 

s 1t 2 5 3
FOV
r 1 rS 2 e2iDvtd r

S
,  (3) 

where r 1 rS 2   is the spin (proton) density function such that  
M0 ~ er 1 rS 2 dr

S
, Dv  is the frequency of M

S
 precessing about the 

B
S

0 field (in the rotating frame), and FOV denotes the field of view. 
Note that in (3), all the modulating factors (such as T1-weighting, 
T2-weighting, and diffusion-weighting, which are important for 
image contrast) are ignored for simplicity such that r 1 rS 2   can 
be taken as the desired image function. The time signal s 1t 2
can be mapped to the Fourier domain (commonly called k-space) 
if the signal is acquired in the presence of a  gradient field (charac-
terized by gradient vector G

S
5 1Gx, Gy, Gz 2 such that 

Dv 1 rS 2 5gG
S # r

S
.  In this case, (3) can be rewritten as 

s 1 kS 2 5 3
FOV
r 1 rS 2 e2i2pk

S#rSdr
S

,  (4) 

where k
S
5gG

S
t/2p.  This equation is 

known as the Fourier imaging equation 
for MRI. 

MR physics provides a lot of flexibility 
in sampling k-space. Some typical exam-
ples of k-space sampling are shown in 
Figure 1. In both Cartesian and polar sam-
pling [Figure 1(a) and (b)], each line of 
data is commonly generated by one RF 
excitation and acquired in the presence of 
constant gradients, which often leads to 
long data acquisition time. The non-Car-
tesian trajectories in Figure 1(c) and (d) 
are generated using time-varying 
 gradients and the data can be acquired 
more efficiently. Regardless of the sam-
pling trajectories, sampling of k-space in 
conventional Fourier imaging is governed 
by Shannon’s sampling theorem and the 
number of measurements needed increas-
es exponentially with the dimension of the 
image function. This presents a significant 
practical problem for fast imaging. 
Sparser sampling of k-space can reduce 
imaging time for MRI, and parallel imag-
ing using multichannel phased array coils 

is an effective method for doing so. Many methods exist to 
achieve sub-Nyquist sampling of k-space, such as those based on 
compressive sampling theory [1] and the theory of partially sep-
arable functions [2]. A review of these methods is beyond the 
scope of this article. 

We next review parallel MRI in the context of Papoulis’ mul-
tichannel sampling theorem. 

MULTICHANNEL SAMPLING THEORY

PAPOULIS’ SAMPLING THEOREM
Consider a finite-energy signal s 1t 2   that is bandlimited to 
|f | , B/2. The Shannon sampling theorem [3] states that s 1t 2
is uniquely determined from its samples when the sampling 
interval is less than Dt5 1/B,  where Dt  is known as the 
Nyquist sampling interval and B the Nyquist rate. Papoulis 
introduced an important extension to Shannon’s sampling 
theorem to address the multichannel sampling problem. The 
theorem states that s 1t 2   can be recovered exactly (under 
some conditions) from the samples of the output signals of L
linear time-invariant (LTI) filters, sampled at 1/L  of the 
Nyquist rate [4]. To state it more formally, let s 1t 2   be the 
common input to L LTI systems with frequency responses 
H1 1 f 2 , H2 1 f 2 , c, HL 1 f 2 , as shown in Figure 2. The outputs 
of these filters can be expressed as 

[FIG1] Typical sampling patterns in k-space: (a) Cartesian, (b) polar, (c) zig-zag, and 
(d) spiral.

Ky

Ky

Ky

Ky

Kx
Kx

KxKx

(a) (b)

(c) (d)

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [92]   JULY 2010

s, 1t 2 5 3
B/2

2B/2
S 1 f 2 H, 1 f 2 ei2p ftdf,  (5)

where S 1 f 2   is the Fourier transform of s 1t 2 . Papoulis showed    
[4] that s 1t 2   can be recovered from the samples of s, 1t 2   taken 
at 1/L of the Nyquist rate of s 1 t 2 , denoted as s, 1mDt̂ 2 . More 
specifically, 

s 1t 2 5 a
L

,51
a
`

m52`
s, 1mDt̂ 2 g, 1t2mD t̂ 2 ,  (6) 

where Dt̂5 L/B, and g, 1t 2  is an interpolation function obtained 
from 

a
L

,51
H, 1 f 2 a

`

m52`
g, 1t2mDt̂ 2 ei2pfmD t̂5 ei2pft, (7)

for f [ 12B/2, B/2 2 . It can be shown [5] 

g, 1t 2 5 3
B/2

2B/2
G, 1 f 2 ei2pftdf,  (8) 

where the G, 1 f 2  for f [ 12B/2, B/2 2   are the solutions of the 
following equation: 

H 1 f 2 G
S 1 f 2 5Dt̂ e

S
,  (9)

where 

HT 1 f 2 5 DH1 1 f 2 H1 1 f2 B̂ 2 c H1 1 f2 1L2 1 2 B̂ 2
H2 1 f 2 H2 1 f2 B̂ 2 c H2 1 f2 1L2 1 2 B̂ 2
( ( (

HL 1 f 2 HL 1 f2 B̂ 2 c HL 1 f2 1L2 1 2 B̂ 2
T ,

G
S 1 f 2 5 DG1 1 f 2

G2 1 f 2
(

GL 1 f 2
T ,  and e

S
5 D 1

0

(
0

T ,

with B̂5 B/L. Equivalently, in the reduced frequency band 
f [ 1B/22 B̂, B/2 2 , the G, 1 f 2   are given by 

H 1 f 2 G 1 f 2 5Dt̂ I,  (10)

where I is an identity matrix, and G 1 f 2 5 3GS 1 f 2 , G
S 1 f2 B̂ 2 ,c,

G
S 1 f2 1L2 1 2 B̂ 2 4.

The signal s 1t 2   can also be reconstructed in the frequency 
domain by recovering its spectrum S 1 f 2 .  Specifically, for 
f [ 1B/22 B̂, B/2 2 , let 

S
S 1 f 2 5 D S 1 f 2

S 1 f2 B̂ 2
(

S 1 f2 1L2 1 2 B̂ 2
T , and S

S
a 1 f 2 5 DS1

a 1 f 2
S2

a 1 f 2
(

SL
a 1 f 2

T ,

where 

S,
a 1 f 2 5 a

`

m52`
s, 1mDt̂ 2 e2i2pfmDt̂ ,

5 B̂a
L21

r50
S 1 f2 rB̂ 2 H, 1 f2 rB̂ 2 . (11)

We have from (11) that 

S
S

a 1 f 2 5 B̂HT 1 f 2 SS 1 f 2 . (12) 

The original signal spectrum can be recovered by 

S
S 1 f 2 5Dt̂H2T 1 f 2 S

S
a 1 f 2 . (13) 

Both the time-domain and frequency-domain reconstruc-
tion formulas indicate that H 1 f 2   must be full rank for 
f [ 1B/22 B̂, B/2 2   to assure unique perfect reconstruction 
for s 1t 2 .  In other words, perfect reconstruction of s 1t 2
requires  that  the L  vectors  5 3H, 1 f 2 , H, 1 f2 B̂ 2 ,c , 
H, 1 f2 1L2 1 2 B̂ 2 4 6,51

L  are linearly independent for each 
f [ 1B/22 B̂, B/2 2 , which is a stronger condition than requir-
ing 5H, 1 f 2 6,51

L  to be linearly independent functions. 

CONNECTION TO DIGITAL FILTER BANKS
The multichannel sampling theorem can also be conveniently 
expressed in terms of digital filter banks [6] when we are only 
interested in the recovery of Nyquist samples (instead of the com-
plete continuous function) as is the case with imaging. At the 
Nyquist sampling rate (Dt5 1/B), the continuous-time signal 
spectrum S 1 f 2  for |f | , B/2 can be obtained from the discrete-
time samples s 1nDt 2  by 

S 1 f 2 5Dta
n

s 1nDt 2 e2i2pfnDt. (14) 

Substituting (14) into (5) yields 

s, 1mDt̂ 2 5Dta
n

s 1nDt 2 3
B/2

2B/2
H, 1 f 2 ei2pf 1mDt^ 2nDt2 df,

5Dta
n

s 1nDt 2 h, 1mDt̂2 nDt 2 ,

s(t ) s(t )

d1(mΔt )

!

d2(mΔt )

!

!

dL(mΔt )
!

Samples at Nyquist Rate
1
L

....
....

H1(f ) G1(f )

G2(f )H2(f )

HL(f ) GL(f )

[FIG2] A diagram illustrating Papoulis’ generalized sampling 
theorem.
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5Dt 1s * h, 2 1mDt̂ 2 ,
5Dt TL 1s* h, 2 1nDt 2 ,  (15) 

where * denotes convolution and T L  denotes downsampling by 
a factor of L. Equation (15) indicates that s, 1mDt̂ 2  (from the 
continuous time signal s 1 t 2  filtered by analog filter h, 1t 2  and 
sampled at mDt̂) are the same as the data obtained from the 
sequence s 1nDt 2  filtered by a digital filter Dt h, 1nDt 2 , followed 
by downsampling by a factor of L. This representation allows us 
to reconstruct the Nyquist samples s 1nDt 2   using the digital filter 
bank theory, as illustrated in Figure 3, where the H, 1z 2  and 
G, 1z 2  are transfer functions (z transforms of filter coefficients) 
of the so-called analysis and synthesis filters, respectively. The 
reconstruction procedure can be expressed as [7] 

s 1nDt 2 5 a
L

,51
a
`

m52`
s, 1mLDt 2 g, 1 1n2mL 2 Dt 2 ,  (16) 

where the g, 1nDt 2   are digital synthesis filter coefficients. The 
transfer function of the synthesis filters required for exact recovery 
of s 1nDt 2   are given by 

H 1z 2 G
S 1z 2 5 Le

S
,  (17) 

where HT 1z 2  is defined as 

DH1 1z 2 H1 1zW21 2 c H1 1zW2 1L212 2
H2 1z 2 H2 1zW21 2 c H2 1zW2 1L212 2
( ( (

HL 1z 2 HL 1zW21 2 c HL 1zW2 1L212 2
T ,

and G
S 1z 2 5 DG1 1z 2

G2 1z 2
(

GL 1z 2
T ,

where W5 ei2p/L. It can be shown that the digital filters and 
their analog counterparts are related to each other by 
H 1ei2pfDt 25H 1f 2  and G

S 1ei2pfDt 25G
S 1f 2  /Dt

for f[12B/2, B/22 .
MULTIDIMENSIONAL SAMPLING
Papoulis’ sampling theorem can be extend-
ed to M  dimensions [8]. Consider a finite-
energy d -dimensional signal s 1 tS 2   for 
t
S
5 3t1, t2, c, td 4T, which is “bandlimit-

ed” to a d-dimensional cell C. Passing the 
signal through L d -dimensional filters 
H1 1 f

S 2 , H2 1 f
S 2 , c,  and HL 1 f

S 2   for 
f
S
5 3f1, f2, c, fd 4T yields 

s, 1 tS 2 5 3
C

S 1 fS2 H, 1fS2 e2i2pf
S . t

S

d f
S

 (18) 

for the ,th channel. The multidimensional 
extension of Papoulis’ sampling theorem 

enables perfect reconstruction of s 1 tS 2   from samples of s, 1 tS 2
taken below the Nyquist rate. Specifically, let 5vSj6j51

d  define a 
sampling lattice in the d -dimensional t

S
-space (a two-dimen-

sional (2-D) example is shown in Figure 4). Vm
S

 specifies 
a sampling of t

S
,  where V5 1 vS1, v

S
2, c, v

S
d 2   and m

S
 is a 

d-dimensional vector of integers. It can be shown that if the 
sampling density of t

S
 is not lower than 1/L of the Nyquist 

density, we have (under some conditions on H, 1 f
S 2   similar to 

the one-dimensional (1-D) case) 

s 1 tS 2 5a
L

,51
a

mS[Zd

s, 1Vm
S 2 g, 1 tS2 Vm

S 2 ,  (19) 

where g, 1 tS 2   is an interpolation function. The Fourier trans-
form G, 1 f

S 2  of g, 1 tS 2   is given by 

H 1 f
S 2GS 1 f

S 2 5 |det 1V 2 | e
S

,  (20)

where G 1 f
S 2 5 3G1 1 f

S 2 , G2 1 f
S 2 , c, GL 1 f

S 2 4T,  and 

HT 1 f
S 2 5 DH1 1 f

S 2 H1 1 f
S
2Uq

S
1 2 c H1 1 f

S
2Uq

S
L21 2

H2 1 f
S 2 H2 1 f

S
2Uq

S
1 2 c H2 1 f

S
2Uq

S
L21 2

( ( (
HL 1 f

S 2 HL 1 f
S
2Uq

S
1 2 c HL 1 f

S
2Uq

S
L21 2

T ,

H1(z) G1(z)L L
d1(mΔt )

!

s(nΔt )

!

s(nΔt )
H2(z) G2(z)L L

d2(mΔt )

!

HL(z) GL(z)L L
dL(mΔt )

!

....
....

....

[FIG3] A diagram of a digital filter bank.

t2

t1 f1

f2

u2

u1

C0

C

v2

v1

(a) (b)

[FIG4] Two-dimensional sampling: (a) a sampling pattern and (b) subcells that are shifted 
replica of reference subcell C0 covering the spectrum S 1f1, f2 2  and folded together when 
s 1t1, t2 2  is sampled with the pattern in (a).

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [94]   JULY 2010

with U5 V21. A detailed description of the multidimensional, 
multichannel sampling theorem can be found in [8].

WELL POSEDNESS
Assume that each undersampled measurement s, 1mDt̂ 2   is cor-
rupted by additive white noise with zero mean and variance ss

2

and there is no correlation between channels (correlated noise 
can be prewhitened). According to the multichannel sampling 
theory, the noise level of the interpolated data is [9] 

s2 1t 2 5ss
2a

L

,51
a
`

m52`
|g, 1t2mDt̂ 2 |2. (21) 

In the frequency domain, we have 

s2 1 f 2 5 ss
2

Dt̂a
L

,51
|G, 1 f 2 |2. (22) 

In considering the well posedness of the multichannel sam-
pling problem, often the average noise level is evaluated, which 
is given by 

s25
ss

2

Dt̂ a
L

,51
3
`

2`

|g, 1t 2 |2dt,  (23)

or equivalently,

s25
ss

2

Dt̂ a
L

,51
3

B/2

2B/2
|G, 1 f 2 |2df. (24) 

If s2 is unbounded, the multichannel sampling problem is 
said to be ill posed. The sufficient and necessary condition for 
the multichannel sampling problem to be well posed is that the 
interpolation function is square-integrable; that is, G, 1 f 2 ,
f [ 12B/2, B/2 2   belongs to L2 12B/2, B/2 2   [9], [10]. Clearly, 
to verify the condition requires calculation of the interpolation 
functions by matrix inversion. An alternative sufficient condi-
tion depending only on the input filters states that to achieve 
the maximum data reduction R5 L, the condition requires the 

existence of a positive constant b such that |detH 1 f 2 | $ b . 0, 
for f [ 1B/22 B̂, B/2 2   [10]. 

PARALLEL MRI AS VIEWED FROM 
MULTICHANNEL SAMPLING THEORY
While parallel MRI was developed independently of the multi-
channel sampling theory, their close relationship was 
 recognized in [11] and [12]. This section discusses this connec-
tion so as to provide signal processing researchers a familiar 
view of parallel MRI. 

MRI USING PHASED ARRAY COILS
The idea of using phased array coils for MRI dates back to the 
early 1980s, although practical methods for parallel imaging 
emerged more recently. The early efforts were focused on build-
ing array coils with minimal coil-to-coil coupling [13], [14]. They 
were successfully used for extended-FOV imaging [15], [16]. 
Using array coils for fast imaging was explored by a number of 
groups [17]–[24], although the successful efforts by Sodickson et 
al. [22] and Pruessmann et al. [23] are largely responsible for the 
widespread application of this powerful technology. 

Figure 5 illustrates parallel imaging using phased array coils. 
Assume that L coils are used for signal reception. The signal 
received by the lth coil is given by 

s, 1 kS 2 5 3
FOV
r 1 rS 2 Bc,, 1 rS 2 e2i2pk

S# rSdr
S

,  (25)

where Bc,, 1 rS 2  is the receiving sensitivity function of the ,th
coil, for ,5 1, 2,c, L. Equation (25) is the basic data acquisi-
tion equation for MRI using phased array coils, which can be 
derived from (2)–(4) recognizing the fact that the coils now 
have spatially nonuniform sensitivity. The term parallel imag-
ing is often used for this data acquisition method to emphasize 
the fact that the s, 1 kS 2   are acquired simultaneously for 
,5 1, 2, c, L, and the term sensitivity encoding is used to 
refer to the spatial encoding effect of the sensitivity function 
Bc,, 1 rS 2   in (25). Clearly, a number of things are possible with 
(25), including extended-FOV imaging and fast imaging with 
sparse sampling of k-space. The latter is the focus of modern 
parallel imaging research and will be discussed next using mul-
tichannel sampling theory. 

PARALLEL MRI WITH SPARSE SAMPLING OF K-SPACE
Parallel MRI can be viewed as an application of the multichan-
nel sampling theory by comparing (25) with (18). This connec-
tion was originally made in [11] and [12]. In making this 
connection, the acquired k-space signal s, 1 kS 2  in parallel MRI 
corresponds to the output signal s, 1 tS 2  of a filter in multichan-
nel sampling, the desired image r 1 rS 2  corresponds to S 1 f

S 2 , and 
the coil sensitivity function Bc,, 1 rS 2  corresponds to the filter 
frequency response H, 1 f

S 2 . The above correspondence is sum-
marized in Table 1. 

As described in the introduction, k-space can be covered in a 
number of ways in MRI. While Nyquist criterion has to be satisfied 
in conventional imaging, the multichannel sampling theory 

[FIG5] Setup of parallel magnetic resonance imaging with 
phased array coils.
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enables sparser sampling of k-space without aliasing artifacts. In 
the popular case of Cartesian sampling, downsampling can be 
applied to one direction: the phase encoding direction, and the 
maximum undersampling factor is L (the number of receiving 
channels). In this case, the 1-D Papoulis’ formulas can be applied 
directly for image reconstruction due to the  separability of 
Cartesian sampling. However, when undersampling is applied 
along multiple directions on a non-Cartesian grid, the reconstruc-
tion formulas for multichannel sampling may not apply directly. If 
the sampling pattern has a lattice structure (e.g., zig-zag sam-
pling), the multidimensional, multichannel sampling theory can 
be used. For other non-Cartesian trajectories used in parallel MRI 
(such as radial and spiral trajectories), the multidimensional sam-
pling theorem does not provide a well-formulated solution. The 
reconstruction issue is examined in the section “Discussions.” 

It is worthwhile to point out that while the analysis/synthe-
sis filters in a filter bank can be designed to satisfy certain “per-
fect” reconstruction conditions, there is little flexibility in 
reshaping the coil sensitivity functions in parallel MRI for opti-
mal performance as they are determined by the physical prop-
erties of a given receiver system. In practice, the sensitivity 
functions of receiver coils are not known a priori (as they may 
also be affected by the object due to the loading effect). 
Currently, there are two approaches for estimating the sensitiv-
ity functions. One approach is to perform a reference scan, 
from which the sensitivity functions are determined [23]. 
Another approach is to “densely” sample (satisfying the Nyquist 
rate) the central k-space to provide self-calibration data [25]. A 
detailed discussion of the issue can be found in [26]. 

IMAGE RECONSTRUCTION FROM 
MULTICHANNEL, UNDERSAMPLED DATA
The multichannel sampling theory provides two approaches for 
image reconstruction from multichannel k-space data on a 
Cartesian grid with 1-D undersampling. 

K-SPACE METHODS
Based on (6), the k-space signal can be exactly reconstructed by 

s 1k 2 5 a
L

,51
a
`

m52`
s, 1mDk̂ 2 g, 1k2mDk̂ 2 ,  (26) 

if the coil sensitivity vectors 5[Bc,, 1x 2 , Bc,, 1x2 B̂ 2 ,c,
Bc,, 1x2 1L2 1 2 B̂ 2 4 6,51

L  are linearly independent for x [
1B/22 B̂, B/2 2 . Or equivalently, the Nyquist samples s 1nDk 2
can be exactly reconstructed using the filter bank formula 

s 1nDk 2 5 a
L

,51
a
`

m52`
s, 1mLDk 2 g, 1 1n2mL 2 Dk 2 . (27) 

The filters g, 1k 2   and g, 1nDk 2   are defined in the same way 
as in (7) and (17), respectively, except for the notation change 
(e.g., from k to t). 

While (27) gives perfect reconstruction, it is impractical 
because of the infinite-length filtering required. All practi-

cal k-space algorithms use a set of finite-length filters 
g|, 1nDk 2 , and the corresponding k-space reconstruction for-
mula becomes 

s 1nDk 2 5 a
L

,51
a

:n/L;1N2

m5 :n/L;2N1

s, 1mLDk 2 g|, 1 1n2mL 2Dk 2 , (28) 

where N1 and N2 are integers and : # ;  denotes the floor. A 
number of methods have been proposed for determining 
g|, 1nDk 2   and implementing (28) (e.g., [27]–[33]), which can 
be viewed as variants of the well-known simultaneous acquisi-
tions of spatial harmonics (SMASH) algorithm [22] and the 
generalized autocalibrating partially parallel acquisitions 
(GRAPPA) algorithm [34]. 

The SMASH algorithm can be viewed as an approximate 
implementation of the filter bank reconstruction where the 
length of the synthesis filter g|, 1rDk 2   is assumed to be the 
same as the undersampling factor. The Nyquist k-space data of 
the desired image are reconstructed by 

s 3 1mL1 r 2Dk 45 a
L

,51
s, 1mLDk 2 g|, 1rDk 2 , r5 0, c, L2 1.

 (29) 

The filter coefficients g|, 1rDk 2   are obtained by sampling 
the analog filters g|, 1k 2   at rDk,  where the g|, 1k 2   are the 
zero-order 1m5 0 2  approximation of the perfect reconstruc-
tion filters in (7). According to (7), the analog filters are 
given by 

a
L

,51
g|, 1k 2 H, 1x 2 5 ei2pkx. (30) 

Several extensions of the basic SMASH algorithm have been 
proposed. For example, AUTO-SMASH [27] and VD-AUTO-
SMASH [29] acquire some auto-calibration data to avoid explicit 
use of the coil sensitivity functions, tailored SMASH [28] allows 
higher-orders approximation of the perfect reconstruction fil-
ters, and generalized SMASH uses finite-length filters to approx-
imate the sensitivity functions [30]. 

The GRAPPA algorithm [34] also implements (28) with 
finite-length interpolation filters, but with a key innovation to 

[TABLE 1] EQUIVALENT NOTATIONS IN MULTICHANNEL 
GENERALIZED SAMPLING AND PARALLEL MRI.

MULTICHANNEL SAMPLING PARALLEL MRI

TIME DOMAIN ( t
S

) k-SPACE (k
S 2

FREQUENCY DOMAIN (f
S 2 IMAGE DOMAIN ( r

S 2
B-BANDLIMITED B-LIMITED FOV

DESIRED SIGNAL s(t
S 2 DESIRED IMAGE IN k-SPACE s(k

S 2
FILTER OUTPUT S<( t

S 2 ACQUIRED k-SPACE SIGNAL S<(k
S 2

SPECTRUM OF DESIRED SIGNAL S(f
S 2 DESIRED IMAGE r( r

S 2
LINEAR SYSTEM RESPONSES H<(f

S 2 SPATIAL COIL SENSITIVITIES BC,< 1 rS 2
INTERPOLATION FUNCTIONS g<(f

S 2 RECONSTRUCTION FILTERS g<(k
S 2

SAMPLING INTERVAL Dt̂ k-SPACE SAMPLING INTERVAL Dk̂
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remove the need for coil sensitivity estimation. Specifically, it 
expresses the signal from each channel si 1nDk 2  as 

si 1nDk 2 5 a
L

,51
a

:n/L;1N2

m5 :n/L;2N1

s, 1mLDk 2 g|, 1 1n2mL 2Dk 2 . (31) 

To determine the interpolation filter coefficients g|, 1nDk 2 ,
some calibration k-space data are acquired at the Nyquist rate 
for each channel. After the g|, 1nDk 2   are determined from the 
calibration data, (31) is used to interpolate si 1nDk 2 . The final 
reconstruction is obtained by combining the reconstructions 
from the interpolated data using a “sum of squares” method [15]. 
Several extensions of the GRAPPA algorithm have been proposed. 
For example, use of the GRAPPA operator formalism [31] avoids 
the need for additional calibration data, cross-validated GRAPPA 
[32] optimizes the practical filter length, and infinite impulse 
response (IIR) GRAPPA [33] uses IIR filters in replace of the finite 
impulse response (FIR) filters. 

IMAGE-DOMAIN METHODS
Equation (13) provides a formula for image reconstruction in the 
image domain 

r
S 1x 2 5Dk̂H2T 1x 2 rSa 1x 2 . (32) 

In practice, with finite sampling, the elements of r
Sa 1x 2   are 

determined by 

r,
a 1x 2 5 a

Nk21

m50
s, 1mDk̂ 2 e2i2pmDk̂x, (33) 

where Nk is the number of undersampled k-space data acquired at 
each channel. 

The sensitivity encoding for fast MRI (SENSE) algorithm [23] 
is perhaps the most popular image-domain reconstruction meth-
od. The basic Cartesian SENSE algorithm implements (32) closely. 
Many extensions have also been proposed to address various prac-
tical issues. For example, regularization has been used to reduce 
noise amplifications [35], and joint estimation has been used to 
reduce modeling errors [36]. 

DISCUSSIONS
While the multichannel sampling theory guarantees “perfect” 
reconstruction from undersampled, multichannel data under 
“ideal” conditions, there are several issues that can affect the 
practical implementation of the theory and the resulting recon-
struction quality. This section presents a brief discussion of 
these issues. 

DATA TRUNCATION
The reconstruction formulas for multichannel sampling were 
derived based on infinite sampling. In practice, finite sampling 
is used, and a question arises as to how data truncation affects 
the reconstruction from undersampled, multichannel data. The 
question was addressed in [37] and, interestingly, the data trun-

cation effects manifest themselves similarly in both conven-
tional Fourier imaging and multichannel imaging under some 
mild conditions.

More specifically, assume that the input sequence to the filter 
bank in Figure 3 is a length- N  sequence: s 1nDk 2   for 
n5 2N/2, 2N/21 1, c, N/22 1. The output from the 
,th channel after downsampling will be a length- M  sequence: 
s, 1nDk̂ 2   for n5 2M/2, 2M/21 1, c, M/22 1.  It was 
shown in [37] that the truncation effect can be described by 

r̂ 1x 2 < r 1x 2  *h 1x 2 ,  (34) 

where 

h 1x 2 5Dk a
N/221

n52N/2
ei2pnDkx5Dk

sin 1pNDkx 2
sin 1pDkx 2 e2ipDkx. (35) 

Equation (34) was used to analyze the data truncation effects in 
SENSE reconstruction [37] and the approximation is rather accu-
rate when the data truncation is not severe and the coil sensitivity 
functions are relatively smooth (see [37] for a more detailed 
description and discussion). 

OVERSAMPLING
While the multichannel sampling theory allows undersampling 
by a factor L (the number of receiver channels), a lower (possi-
bly noninteger) undersampling factor R with 1 , R , L is 
often used in practice. This is called “oversampling” with respect 
to the maximum undersampling allowed. 

In the “oversampling” case, HT 1x 2   in (9) has <R=  columns 
when :R; B̂2 B/2 , x , B/2,  or  :R;  co lumns when 
B/22 B̂ , x , :R; B̂2 B/2, where <R=  denotes the ceiling of R.
Equation (9) is underdetermined in this case, and thus there are 
infinite possible solutions for the reconstruction filters G, 1x 2

G
S 1x 2 5Dk̂ 1HT 1x 2 3H 1x 2 HT 1x 2 421e

S
1 N

S
H1x2 2 ,  (36) 

where N
S

H1x2  denotes an arbitrary vector in the null space of 
H 1x 2 .  Based on the noise analysis in the section “Well 
Posedness,” among the  infinite solutions, the one that minimiz-
es the noise power in reconstruction is given by the minimum-
norm solution 

G
S 1x 2 5Dk̂HT 1x 2 3H 1x 2 HT 1x 2 421e

S
. (37) 

It is easy to see that this oversampled case is usually better 
conditioned than the critically sampled case because an under-
determined H 1x 2  is more likely to be well conditioned than a 
square H 1x 2 . This explains why the noise is improved as the 
undersampling factor R decreases, as illustrated in Figure 6. 

NOISE AMPLIFICATION
Noise amplification is a major practical issue in parallel imag-
ing when the undersampling factors are close to the number 
of channels. One approach to address the “noise amplification” 
problem is to design receiver coils with “well-conditioned” 
sensitivity functions. While it is relatively easy to shape H 1 f 2
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in filter bank design, designing phased 
array coils with “optimal” sensitivity 
functions for parallel imaging is still an 
open problem. The noise amplification 
problem can also be effectively addressed 
in image reconstruction using, for exam-
ple, regularization methods (e.g., [35]). 
Although several regularization methods 
have been adopted for parallel imaging, 
much work remains to develop robust 
methods for regularized image recon-
struction from multichannel, undersam-
pled data with characterizable resolution 
and signal-to-noise ratio performance. 
This is an area in which signal processing researchers can play 
a major role. 

MODELING ERRORS
In the multichannel sampling theory, it is assumed that we have 
precise knowledge of the analysis filters. This is not true in par-
allel MRI as the coil sensitivities need to be estimated from mea-
sured data. The effects of using inaccurate insensitivity functions 
for image reconstruction is dependent on the mathematical 
condition of H 1x 2 . Specifically, let H 1x 2   be in error by DH 1x 2
due to inaccurate sensitivity estimation. The reconstruction in 
(32) is given by 

r
S 1x 2 1DrS 1x 2 5Dk̂ 3H 1x 2 1DH 1x 2 421r

Sa 1x 2 ,  (38) 

where r
S 1x 2   is the true solution and Dr

S 1x 2   is the reconstruction 
error. It can be shown using perturbation analysis [38] that when 
H 1x 2   has full rank and DH 1x 2   has a small L2-norm, then 

||Dr
S 1x 2 ||2

||r
S 1x 2 ||2 # k 3H 1x 24 ||DH 1x 2 ||2

||H 1x 2 ||2 ,  (39) 

where k 3H 1x 24  is the condition number of H 1x 2 . Figure 7 gives 
an example of reconstructions with accurate and inaccurate 
sensitivities. Because H 1x 2   is often ill conditioned in practice 
with large undersampling factors, how to effectively (with per-
formance guarantees) desensitize the reconstruction to model-
ing errors (and measurement noise) is an important signal 
processing issue in parallel MRI research. 

NON-CARTESIAN SAMPLING TRAJECTORIES
As discussed in the section “Parallel MRI with Sparse 
Sampling of k-Space,” parallel imaging with Cartesian 
k-space sampling trajectories and 1-D undersampling can be 
directly mapped to the 1-D multichannel sampling theory. In 
some MRI experiments, it is desirable to use non-Cartesian 
sampling trajectories. In this case, if the sampling pattern 
has a lattice structure as described in the section 
“Multidimensional Sampling,” the multidimensional, multi-
channel sampling theory can be used. For arbitrary nonuni-
form sampling, there is no “standard” multichannel sampling 

theory available, and there are two approaches to handle the 
problem in existing parallel MRI methods. The first approach 
is to directly discretize (25) with some ideal voxel functions 
g 1 rS, r

S
n 2   (e.g., [39]). The image voxels can then be deter-

mined by solving a large linear system equation. This 
approach requires knowledge of the coil sensitivity functions 
Bc,, 1 rS 2 . The second approach is to directly interpolate the 
k-space data using an interpolating kernel determined from 
reference or calibrating data, as is done in GRAPPA (e.g., [40] 
and references cited). While both approaches have worked 
well, it is clear that much work remains to optimize data 
 acquisition and image reconstruction for parallel MRI with 
non-Cartesian sampling trajectories. 

CONCLUSION
Parallel MRI using phased array coils can be viewed as an 
application of  the multichannel sampling theory. 
Specifically, in the case of uniform 1-D undersampling, 
Papoulis’ classical reconstruction formulas correspond well 
to the existing parallel MRI reconstruction algorithms, and 
a number of practical issues can be analyzed in this context. 
However, parallel MRI also presents several unique signal 
processing problems, whose solutions can help maximize 
the potential of parallel MRI for fast imaging. While existing 
parallel MRI methods were developed independently of the 
multichannel sampling theory, making such a connection 

[FIG6] Reconstruction noise is reduced when the undersampling factor decreases from 
(a) eight (equal to the number of channels) to (b) four and (c) two.

(a) (b) (c)

[FIG7] SENSE reconstructions with sensitivities estimated using 
(a) high-resolution and (b) low-resolution reference scans. Eight 
channels and an undersampling factor of four were used.

(a) (b)
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may help develop more optimal methods for parallel MRI 
data acquisition and image reconstruction. 
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P
robing waveform synthesis and receive filter design 
play crucial roles in achievable performance for 
many active sensing applications, including radar, 
sonar, medical imaging, and communications (chan-
nel estimation and spread spectrum). A flexible 

receive filter design approach can be used to compensate for 
missing features of the probing waveforms, at the costs of 
lower signal-to-noise ratio (SNR) and higher computational 
complexity. A well-synthesized waveform, meaning one with 
good auto- and cross-correlation properties, can reduce com-
putational burden at the receiver and improve performance. In 
this article, we will highlight the interplay between waveform 
synthesis and receiver design. We will provide a tutorial review 
of recent novel, cyclic approaches to single and multiple wave-
form designs. Both aperiodic and periodic correlations will be 
considered. We show that by making use of fast Fourier trans-
forms (FFTs), we can now efficiently design sequences that 
were previously impossible to synthesize. Furthermore, we 
will provide an overview of some advanced techniques for 
receiver design, including data-independent instrumental vari-
ables (IV) filters and a data-adaptive iterative approach. We will 
show how these designs can significantly outperform conven-
tional techniques in various active sensing applications.

INTRODUCTION
Areas of active sensing (including radar, sonar, medical imaging, 
and communications) have garnered the attention of research-
ers for decades. The goal of any active sensing application is the 
transmission and reception of one or more chosen waveforms. A 
received signal may be analyzed to determine properties of a 
propagation medium, as in channel estimation for communica-
tions, or to estimate the location and strength of targets in a 
scene, as in medical imaging for breast cancer detection. 
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Performance, in a most general sense, is measured simply by 
the accuracy with which an interpretation of the received signal 
matches the true information in the scene. 

Not surprisingly, a system’s performance is linked directly to 
the behavior of its transmitted waveform(s), which has resulted 
in a vast amount of literature devoted to the study of sequence 
design (e.g., see [1]–[4]). The foundation of research in signal 
transmission has been built, over the last century, on work from 
such notable theorists as Shannon, Nyquist, and Tesla. 
Following World War II, the development and characterization 
of transmission sequences was furthered by such researchers as 
Woodward, Barker, Frank, and Golomb. Waveform synthesis 
remains a dynamic research area even in modern times, as con-
tinued improvements in waveform generation and receiving 
hardware allow for increasingly advanced sequence design. As 
computational limitations on waveform design and transmis-
sion are relaxed, new approaches and improved performance 
become possible. 

In this article, we will offer a tutorial description of some of 
the very latest algorithms for sequence design. Our discussion is 
an extension to the recent special issue [5], which focused on 
several new strategies for waveform development in radar sys-
tems. In [6], a design scheme for periodic constant amplitude 
with zero autocorrelation (CAZAC) sequences is presented for 
single waveform transmissions. Another article [7] in the special 
issue explores the design of complementary sequences. Herein, 
we focus primarily on waveforms with good aperiodic correla-
tions, and we show that our designs can be extended to design 
periodic CAZAC sequences as well. We consider both single 
sequence and multiple sequence set designs. The design of mul-
tiple sequences with good auto- and cross-correlation properties 
is demanded in the emerging fields of multiple-input, multiple-
output (MIMO) radar and MIMO communications (see, e.g., 
[8]–[11]). Further, since our goal is improved system perfor-
mance, we will give an overview of several novel receiver design 
techniques. We will clearly illustrate how receiver design can be 
used to compensate for deficiencies in waveform synthesis. 

THE ACTIVE SENSING PROBLEM
Consider the synthesis of a single sequence with good aperiodic 
autocorrelation, which is widely needed in conventional single-
input, single-output (SISO) radar, sonar, and medical imaging 
applications. In SISO radar, for example, a pulse is transmitted 
in the direction of a scene of interest [12]. The signal is reflected 
by targets in the scene, which could be at different angular and 
range locations relative to the radar. The reflected signals, which 
are attenuated and time-shifted versions of the transmitted 
waveform, are linearly combined at the receive antenna (which 
could be the same as or different from the one used for trans-
mission). Signal processing of the received signal is performed 
to determine unknown properties of the targets, such as their 
range, radar cross section (RCS), and speed (or Doppler shift). 

We let s 1t 2  denote a transmitted waveform of duration t and 
comprising N  subpulses (so that each subpulse has a duration 
of t/N ). We can then represent s 1t 2  by the vector x, whose 

components correspond to the phase-coded amplitude of each 
subpulse (we assume rectangular subpulses) 

x5 3x 11 2 , x 12 2 , c, x 1N 2 4T, (1)

where 1 # 2T  denotes the transpose operation. Due to hardware 
constraints (such as the limitations of the power amplifier) in 
practice, components of the transmitted waveform are com-
monly restricted to being constant modulus. Without loss of 
generality, we consider 5x 1n 2 6n51

N  being unimodular, so that 

x 1n 2 5 e jfn, n5 1, c, N, (2)

where fn represents the phase of x 1n 2 . If the set of targets in 
the scene are represented by their RCSs 5kr, l6  (for r5 1, c, R
denoting the range bin and l5 1, c, L denoting the Doppler 
bin of a target), then the received signal yrr (aligned with the 
transmitted waveform’s reflection from a range bin of interest 
r r) can be modeled as 

yrr5krr, lrx|lr1 a
N21

n52N11
a

L

l511rr1n,l22 1rr, lr2
krr1n,l Jnx|l1e, (3)

where krr, lr refers to the reflection coefficient of a target of inter-
est and e refers to the noise component of the received signal. 
Further, Jn is a shift matrix designed to temporally align the 
reflected signal from a target that lies n range bins away from 
the bin of interest 

Jn5 G
0 0

(
1

1

f
0 1 c0

W
N3N

5 J T
2n, n5 0, 1, c, N2 1.

(4)

We assume that, in general, kr, l5 0 for any r  such that 
r o 51, c, R6. We let x|l5 x ( al denote the Doppler shifted 
waveform (( refers to the Hadamard product operation), and 

al5 31, e jvl, c, e jvl 1N212 4T, l5 1, c, L, (5)

where vl represents the Doppler frequency for the lth Doppler 
bin (we assume L bins divide the Doppler interval of interest). 
We illustrate the model for yrr in Figure 1 (the Doppler effect is 
not shown). The problem of interest for this SISO radar case, as 
well as for any other active sensing application, is the successful 
estimation of the unknown target coefficients given by 5kr, l6.
TRANSMIT WAVEFORM DESIGN
Neglecting interferences from other range bins, which are rep-
resented by the clutter returns in Figure 1, a matched filter can 
be used to provide optimal performance (the highest SNR) in 

n11
3
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the presence of stochastic additive white noise. When clutter 
affects the received signal, a matched filter will function opti-
mally only if the autocorrelation sidelobe terms of the transmit 
waveform, given by 

r 1Dt 2 ! 3s 1t 2s* 1t2Dt 2dt, 4Dt 2 0 (6)

are zero, where 1 # 2 * denotes the complex conjugate for scalars 
and the conjugate transpose operation for vectors and matrices. 

For most modern sensing systems, filtering at the receiver is 
performed digitally. Further, when rectangular subpulses are 
adopted at the transmitter, values of r 1Dt 2  can be obtained 
exactly by a linear combination of two neighboring correlations 
evaluated at integer multiples of t/N  (approximations can be 
made when nonrectangular shaping pulses are used) [3]. Thus, 
in most practical cases, we can restrict our attention to the 
autocorrelation of the discrete sequence 5x 1n 2 6n51

N

rk5 a
N

n5k11
x 1n 2x* 1n2 k 2 5 r2k

* , k5 0, c, N2 1. (7)

No signal in practice can have zero sidelobes for all k 2 0 in 
(7) (since, e.g., |rN21|5 |r2N11|5 1 for all unimodular sequenc-
es). Therefore, a legitimate goal in transmit sequence design 
would be to construct 5x 1n 2 6n51

N  such that the autocorrelation 
sidelobes 5rk, 1k 2 0 2 6  are as small as possible. In other words, 
waveforms with high merit factors (MFs) are desirable [13], [14],  
where we let 

 MF5
N 2

ISL
,  (8)

with 

 ISL5 a
N21

k52 1N212
k20

0 rk 0 2. (9)

ISL refers to the integrated sidelobe level of the autocorrelation 
function. In the next subsection, we will review several existing 
waveforms (including several phase-coded waveforms) that have 
good autocorrelation properties. 

A REVIEW OF EXISTING WAVEFORMS
In 1953, Barker introduced a set of binary codes (meaning 
fn [ 52p, p6  for n5 1, c, N ) that yield a peak-to-peak 
sidelobe ratio of N  and subsequently the highest MF for binary 
sequences of equal length [15]. However, the longest known 
Barker sequence is of length 13, and researchers contend that 
no longer waveforms can satisfy the Barker criteria [3], [16], 
[17]. To identify binary sequences that yield a maximum MF 
(for a given N ) requires an exhaustive search whose computa-
tional complexity increases exponentially with the length, 
which quickly proves intractable as N  increases. At the cost of 
increased hardware complexity, the binary restriction can be 
relaxed to design unimodular sequences (which may or may 
not use a finite alphabet) with lower sidelobe levels and higher 
merit factors. 

Many well-known unimodular phase-coded signals are 
derived from the phase history of a chirp waveform. A chirp is 
a linear frequency-modulated (LFM) pulse whose frequency is 
swept linearly over a bandwidth B  in the sequence’s time 
duration t. Chirp waveforms have been widely used for radar 
applications since World War II, as they possess relatively low 
peak sidelobe levels and are mostly tolerant to shifts in Doppler 
frequency [3]. In addition, chirp signals have spectral efficien-
cy, meaning the power of the waveforms is dispersed evenly 
throughout the frequency spectrum, which allows for high 
range resolution. 

The chirp waveform s 1t 2  is given by 

s 1t 2 5 1

"t e jpB
t
t2

, 0 # t # t, (10)

where B/t is the chirp rate of the signal. By sampling s 1t 2  at time 
intervals ts 1n 2 5 n/B, for n5 1, c, N  (N5 BT), and by omit-
ting the multiplicative term 1/!t,  the following discrete 
sequence is obtained: 

x 1n2 5 s 1ts 1n 22 5 e jpB
T
1n
B
2 2

5 e jp n2

BT 5 e jpn2

N, n5 1, c, N. (11)

The signal 5x 1n 2 6n51
N  shown in (11) has perfect periodic autocor-

relation if N  is even, meaning that all periodic autocorrelation 
sidelobes are zero 

r| 1k25a
N

n51
x 1n2x* 11n1k2  mod N 250, 1# k# N21,  (12)

where 1a mod b2 5 a2 :a/b; b. We refer to waveforms with per-
fect periodic autocorrelations as CAZAC sequences, which were 

[FIG1] Received signal aligned with the return from a target in 
range bin r ′.
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[TABLE 1] FLOWCHART OF THE CAN ALGORITHM.

Begin

Initialization of {x (n )} N
n =1

by a Random or Good Existing Sequence

Compute the Minimizer {ψp}2N
p = 1

N
n =1

for Fixed {x (n )} , see (23)

N
n =1

Compute the Minimizer {x (n )}

p = 1
2Nfor Fixed {ψp} , see (24)

x (i ) − x(i + 1) < η

End

N

Y

thoroughly reviewed in [6]. A set of CAZAC sequences can also be 
constructed, for odd values of N, by altering (11) as follows: 

x 1n 2 5 e jpn1n212
N , n5 1, c, N, (13)

which is the famous Golomb sequence [18]. 
The Frank code [19], which was first presented in 1963, is per-

haps the most well-known CAZAC sequence. Frank signals are also 
derived from the phase history of a chirp waveform, and are 
defined for a square N5K 2 length sequence as 

x 11m2 1 2K1 p2 5 e j2p
1m212 1p212

K , m, p5 1, c, K. (14)

Similarly, P4 sequences [20] are phase-coded CAZAC waveforms 
whose phases are quadratic functions of n. The P4 sequence is 
defined for any length N  as 

x 1n2 5 e j 2p
N
1n2121n212N

2
2, n5 1, c, N. (15)

CAZAC sequences, both chirp like and nonchirp like, have been 
shown to exist for any length N  [6] (infinite number of sequences 
exist for some N, in fact). In contrast, the design of signals with 
low ISL levels (high MF values), and thus good aperiodic correla-
tion properties, has proven more challenging to researchers. The 
need for low ISL waveforms, as opposed to CAZAC sequences, is 
entirely dependent on the application and directly relates to the 
stationarity of the scene or channel, the maximum signal delay, 
and the SNR. We focus herein on the design of signals with low 
aperiodic correlation levels. 

To find sequences with low autocorrelation levels that lack a 
closed-form expression (unlike the previous signals), researchers 
have used gradient descent and stochastic optimization tech-
niques (see, e.g., [21]–[23]). These algorithms are usually compu-
tationally expensive and only perform well for small values of N,
such as N|102. For large values of N, a series of recently pro-
posed cyclic algorithms (CAs) can be used to effectively minimize 
the ISL-related metrics locally. We outline these algorithms in the 
next few subsections. 

THE CAN ALGORITHM
We first present a synopsis of the CA-new (CAN) algorithm pro-
posed in [24]. Recalling the ISL definition offered in (9), and by 
applying the Parseval equality, the ISL of a sequence can be 
expressed in the frequency domain as 

 ISL5
1

2Na
2N

p51

3F 1up2 2N 4 2, (16)

where 5F 1up 2 6p51
2N  is the DFT of 5r 1k 2 6k52N11

N21  at frequencies 
5up5 2pp/2N6p51

2N  [25]. Since the DFT of 5r 1k2 6k52N11
N21  yields 

the spectral density function of 5x 1n 2 6n51
N ,  so that 

F 1up 2 5 0 gN
n51 x 1n 2e2jup n 0 2, the ISL in (16) can be further 

expressed as 

 ISL5
1

2Na
2N

p51
c `a

N

n51
xne2jup n ` 22N d 2

. (17)

Minimization of the ISL metric in (17), which is a quartic function 
of 5x 1n 2 6n51

N , can prove computationally challenging. To simplify, 
we instead consider the following “almost equivalent” problem 
[26], [24] 

 min5x1n26n51
N ;5cp6p51

2N a
2N

p51
`a

N

n51
xne2jup n2"N e jcp ` 2 (18)

 s.t. |x 1n2 |5 1, n5 1, c, N.

Sequences that minimize the ISL equation in (17) and those that 
solve the ISL-related minimization problem in (18) will, in gener-
al, be different. However, we contend that a sequence that makes 
the cost function in (18) small will certainly lead to a small ISL 
value in (17) (please see [27] for further discussion). To within a 
multiplicative constant, the criterion in (18) can be rewritten as 

7A*w2 v 7 2,  (19)

where 

w5 Sx 112 , c, x 1N 2 , 0, c, 0T
2N31
T ,  (20)

v5
1

"2
3e jc1, c, e jc2N 4T, (21)

and 

A*5
1

"2N
£

e2ju1 c e2j2Nu1

( f (
e2ju2N c e2j2Nu2N

§ . (22)
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If f5 A*w represents the Fourier transform of w, then for fixed f,
the minimizer of (19) is given by 

cp5 arg 1 f 1 p22 , p5 1, c, 2N. (23)

Similarly, for a given v, and if g5 Av denotes the inverse Fourier 
transform of v, then the minimizing sequence 5x 1n 2 6n51

N  of (19) 
is given by 

x 1n 2 5 e jarg1 g1n22, n5 1, c, N. (24)

The steps of CAN, to provide the cyclic minimization of the ISL-
related metric in (18), are summarized in Table 1 (where x1i2
denotes the sequence obtained at the ith iteration). Note that in 
Table 1, h is a predefined threshold, such as 1023. Due to its sim-
ple FFT operations [see (22)–(24)], CAN can be used to provide 
waveform synthesis on an ordinary PC for very large values of N,
such as N|106.

CAN (as well as periodic CAN, which is described in the section 
“The Periodic Correlation Case”) shares a close relationship with 
the Gerchberg-Saxton algorithm (GSA) [28], which was originally 
presented in the optics literature more than 35 years ago. In 
Appendix A, we will review a version of GSA and explain its con-
nection to the cyclic algorithms described in this article. 

In Figure 2, we compare the merit factors of the P4, Frank, and 
CAN (initialized with a Frank sequence) sequences for the follow-
ing lengths: N5 32, 52, 102, 152, 202, 302, 702, and 1002 (note 
that each N  is chosen to be a square to cater to the Frank 
sequence; the CAN algorithm does not have such a restriction). 
The results are shown using a log-log scale. The CAN sequence 
provides the highest merit factor for each value of N  considered. 
When N5 1002, the CAN sequence provides the largest merit fac-
tor of 1,769.05, which is several times larger than that given by the 
Frank sequence (which is 246.39). Although a Frank sequence was 
used here to initialize CAN, a similar result would have been 
obtained by initializing the algorithm with a P4 or Golomb 
sequence (since these chirp-based waveforms are closely related). 

We provide the autocorrelation of a Frank sequence and CAN 
sequence (again initialized with a Frank sequence) for length 
N5 1002 in Figure 3(a) and (b), respectively. In addition to its 
lower ISL value, the CAN sequence has a lower PSL (257.27 dB) 
compared to the Frank signal (249.94 dB). 

THE CA ALGORITHM
In some cases, the maximum difference between the arrival times 
of the sequence of interest and of the interference is (much) small-
er than the duration of the emitted signal (see, e.g., [29]–[31]). 
Consequently, for transmit sequence design in such instances, the 
interest lies in making 5|r 1k 2 |6k51

P21 small, for some P , N, instead 
of trying to minimize all correlation sidelobes 5|r 1k 2 |6k51

N21. The 
value of P is selected based on a priori knowledge about the appli-
cation. In wireless communications, for example, significant chan-
nel tap coefficients can occur only up to a certain known 
maximum delay (P is chosen as the said delay). In this section, we 

briefly summarize the CA algorithm, which serves as an extension 
to CAN for this P , N  case. Further details, as well as an applica-
tion of CA to multiple sequence sets, can be found in [32] and [26]. 

Define the following matrix: 

X5 F
x 11 2 0

( f
( x 11 2

x 1N 2 (
f (

0 x 1N 2

V
1N1P2123P

. (25)

[FIG2] The merit factor versus the sequence length N for P4, 
Frank and CAN (initialized with a Frank sequence) sequences.
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[FIG3] The autocorrelations of (a) a Frank sequence with 
N5 1002 and (b) a CAN sequence, initialized with a Frank 
sequence, with N5 1002.
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It follows that 

X * X5 D r 10 2 r 11 2 * c r* 1P2 1 2
r 11 2 r 10 2 f (
( f f r* 11 2

r 1P2 1 2 c r 11 2 r 10 2
T

P3P

. (26)

Minimization of the autocorrelation terms 5|r 1k 2 |6k51
P21 can be 

achieved by minimizing the criterion 7X * X2N I 7 2. Similar to 
(18), we can instead define the following “almost equivalent,” 
computationally feasible, minimization problem: 

 min5x1n26n51
;N U
7X2"NU 7 2 (27)

 s.t.  U*U5 I

0 x 1n2 0 5 1, n5 1, c, N.

As in the section “The CAN Algorithm,” a cyclic approach is 
adopted. X is first initialized by a randomly generated unimod-
ular sequence. The criterion in (27) is then iteratively mini-
mized by fixing X to compute U, then fixing U to compute X
(and so on, until a given stop criterion is satisfied). During this 
iterative process, both U and X have closed-form updating for-
mulae (see [26] for details). Although CA does not follow an 
FFT-based approach, we can also extend the CAN approach 
described in the section “The CAN Algorithm” to design 
sequences whose correlation lags are only minimized over a 
region of interest. Further details can be found in [24]. 

SEQUENCE SETS
Many applications, such as MIMO radar and code division multi-
ple access (CDMA) systems, require a set of sequences with both 
good auto- and cross-correlation properties. We can extend the 
single sequence scenario, which only considers autocorrelation, 
to the multiple sequence case as follows. 

For a set of M  unimodular sequences 5xm 1n 2 6  (m5

1, c, M  and n5 1, c, N ), the cross-correlation between 
the kth and sth sequence at time lag l is defined as 

rks 1 l 2 5 a
N

n5l11
xk 1n 2xs

* 1n2 l 2 5 rsk
* 12l 2 (28)

k, s5 1, c, M and   l5 0, c, N2 1.

The ISL, which now must consider both the auto- and cross-
correlations, can be extended to the multiple waveform case as 

 ISL MIMO5 a
M

k51
a
N21

l51

0 rkk 1 l 2 0 21 a
M

k51
a
M

s51
s2k

a
N21

l50

0 rks 1 l 2 0 2. (29)

Minimization of the ISL in (29) can be performed, for all 
delays, using an FFT-based approach, which allows for efficient 
computation and permits the design of longer sequences. This 
approach parallels the CAN formulation reviewed in the sec-
tion “The CAN Algorithm,” and we refer the reader to [27] for 
further details. Similarly, when the maximum lag considered 
is less than the sequence length, the CA approach described in 
the section “The CA Algorithm” can be directly applied to the 
multiple sequence case. More information can be found in 
[27], [32], and [26]. 

In Figure 4, we provide the cross-correlations for a set of 
M5 4 CA sequences with length N5 256. We consider P5 30 
correlation lags (we are only interested in minimizing 5rks 1 l 2 6
in (28) for |l| , 30); we overlay the set of seven cross-correla-
tions (i.e., between the first and second waveform and the first 
and third waveform). As evidenced, the cross-correlations are 
well below 2250 dB in the region of interest. The autocorrela-
tions of the sequences (not shown) have similar, near-zero 
behavior in the region of interest. 

THE PERIODIC CORRELATION CASE
As discussed in the section “A Review of Existing Waveforms,” 
extensive literature exists on the design of signals with good 
periodic properties. Sequences having low periodic autocorre-
lations are useful for such applications as CDMA systems [33] 
and ultrasonic imaging [34]. Further, for applications involv-
ing multiple waveforms, sequence sets with good periodic auto 
and cross-correlations are often desirable. For example, in 
asynchronous CDMA systems, low periodic autocorrelation 
improves synchronization and low periodic cross-correlation 
reduces interference from other users. In this section, we 
briefly describe the extension of CA to the design of CAZAC 
sequences of arbitrary length N  (referred to as periodic CAN, 
or PeCAN). Unlike many existing CAZAC waveforms, periodic 
CA sequences do not have a  closed-form expression, which is 
certainly desirable in many covert applications (for example, 
covert underwater communications [31]). 

We can replace the matrix X in (25) with 

X5 D x 11 2 x 1N 2 c x 12 2
x 12 2 x 11 2 x 13 2
( ( (

x 1N 2 x 1N2 1 2 c x 11 2
T

N3N

,  (30)
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[FIG4] Overlaid cross-correlations for a CA sequence set with 
M5 4, N5 256, and P5 30.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [105]   JULY 2010

where each column is a shifted version of the sequence 
5x 1n 2 6n51

N . The matrix product X*X will now include periodic 
correlations at all lags, and the minimization problem in (27) 
(and subsequent cyclic solution) follows as before. For the 
design of longer sequences, we can instead adopt an FFT-based 
approach, similar to the one used by CAN in the section “The 
CAN Algorithm.” We refer the readers to [35] and [36] for 
more details on the cyclic design of sequences with good peri-
odic properties. 

We show the superimposed (periodic) autocorrelations of 50 
periodic CAN sequences of length N5 200 in Figure 5. In our 
simulation, we actually generated 100 sequences using random 
initializations; the 50 sequences shown represent those with the 
lowest ISL. As shown in Figure 5, the sidelobes for each of 
these sequences is below 2140 dB (and can be considered zero 
in practice). 

RECEIVER DESIGN
In the section “Transmit Waveform Design,” we described sever-
al different waveforms, all designed to provide a high MF and 
thus allow for better clutter suppression at the receiver. For 
some cases, however, even a careful construction of the radar’s 
transmit waveforms, when coupled with a matched filter at the 
receiver, still might not provide sufficient sidelobe reduction. To 
address these  situations, we now turn our attention to the 
receiver stage of an active sensing system. We begin our discus-
sion by reviewing the matched filter and by motivating the need 
for more advanced receiver designs. 

MATCHED FILTER
A matched filter is applied, in many applications, to improve the 
SNR properties of the received signal (see, e.g., [12] and [37]). 
Ideally, a matched filter works by amplifying the signal of inter-
est component in the received signal and by reducing the sig-
nal’s noise component, which is usually assumed to be 
uncorrelated with the transmitted sequence(s). In the presence 
of stochastic additive white noise, in fact, a matched filter pro-
vides the highest SNR performance. If the transmitted wave-
form, or waveform set, has good correlation properties, a 
matched filter will also serve to weaken the reflected signals 
from targets in neighboring range cells to the one of interest. 

After the matched filter is applied to yrr, the least-squares 
estimate for the reflection coefficient krr, lr is then given by 

k̂rr, lr5
a
N

n51
x|lr

* 1n 2yrr 1n 2

a
N

n51
|x|lr 1n 2 |2

5
x|lr

*yrr

x|lr
* x|lr

. (31)

Similar estimates can be generated for the other targets in the 
scene by reformulating the model for the received signal in (3) 
(so that yrr is aligned with the return from a range bin of inter-
est r r for r r5 1, c, R). 

If there were no interference terms in (3) (i.e., if kr, l5 0
for any 5r, l6 2 5r r, l r6 ), then the matched filter would pro-

vide a highly accurate estimate of krr, lr. When interference 
terms (clutter) are present in the received signal, which is 
commonly the case in practice, then the performance of the 
matched filter for estimation will depend directly on the cor-
relation properties of the transmitted sequence(s). In the 
section “Transmit Waveform Design,” we described several 
cyclic approaches that can be used to design sequences (or 
sequence sets) with low correlations. When the correlation 
region of interest is small enough, as exemplified in Figure 
4, we are often able to synthesize sequences (or sequence 
sets) with nearly zero sidelobes over the region of interest. 
When we wish to minimize the correlation across all 
sequence lags, or when Doppler effects are nonnegligible, 
however, it is not possible to design waveforms (or waveform 
sets) with zero ISL. 

The autocorrelation of a waveform s 1t 2  represents the 
matched filter’s temporal response to a target with negligible 
Doppler shift (a stationary target relative to the radar). If a tar-
get is moving, we have to instead consider the ambiguity func-
tion of the signal [12] 

0x 1Dt, d 2 0 5 `3
`

2`

s 1t 2s* 1t1Dt 2e j2pdtdt ` ,  (32)

where Dt  again represents the relative time delay and d
represents the Doppler shift of a target. Unlike the autocor-
relation, the volume (sidelobes) underneath the ambiguity 
function for any sequence is constrained to unity (when we 
normalize by the energy in the signal). In Figure 6, we 
show the three-dimensional representation of the ambigui-
ty function of a CAN signal (initialized with a random 
sequence) with length N5 36 (where tb5t/N  denotes the 
length of each subpulse). As we can see, the ambiguity 
function of the CAN waveform resembles a “thumbtack” in 
shape. Although a “thumbtack” form is desirable, since this 
shape can lead to improved Doppler resolution, the total 
volume underneath the function remains fixed. Since we 

[FIG5] Overlaid autocorrelations of 50 periodic CAN sequences 
of length N5 200.
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are unable to design a sequence (or a set of sequences) that 
has zero sidelobes for all time delays and Doppler shifts in 
(32), we instead seek to replace the matched filter with 
more advanced receiver designs. 

IV RECEIVE FILTER
The instrumental variables (IV) method (also called a mis-
matched filter), a more general approach for estimating krr, lr,
can be used to significantly lower sidelobes at the cost of a 
reduced SNR [38], [39], [40]. Temporarily neglecting Doppler 
effects (so that L5 1, v15 0, and x|15 x), the IV estimate of 
krr is given by 

k̂rr5
z*yrr

z*x
,  (33)

where z denotes the IV receive filter. In the case z5 x, then (33) 
reduces to the matched filter estimate of krr. In general, and 
unlike the matched filter, the elements of z are not restricted to 
be unimodular, since this vector is only designed for the purpos-
es of estimation. Also, we note that IV filters can be precomput-
ed offline. From a computational standpoint, therefore, IV 
certainly offers minimal burden to the receiver, as the complexi-
ty of its application is comparable to that of the matched filter. 
We assume herein that z is a vector of length N, although, by 
padding the transmit waveform with zeros, a longer IV vector 
could be designed to improve sidelobe reduction even more (at 
a cost of further reduced SNR). 

We consider the IV formulation given in [40]. The goal of the 
IV approach is to find a signal z that minimizes the ISL, which, 
in the negligible Doppler case, is given by 

 ISLIV5
aN21

k52 1N212, k20
0 z*Jkx 0 2

0 z*x 0 2 . (34)

By applying the Cauchy-Schwartz inequality, the minimum 
value of ISLIV was shown to be achieved when z5RIV

21x, where 

RIV5 a
N21

k52N11, k20
Jkxx*Jk

T. (35)

In this way, an IV receive vector, in the absence of Doppler 
effects, can be designed to reduce sidelobes to near zero levels. 
When motion is present in the scene, however, an IV filter can 
fail to provide satisfactory results. 

We will now assume that the Doppler shifts of the targets in 
the scene 5v l6l51

L  are assumed to lie within an uncertainty 
interval denoted by V5 [va, vb 4  (where vb . va and where 
we choose L such that 5v l6l51

L  covers V). Since no knowledge 
is assumed of the targets’ Doppler shifts, other than that they 
belong to V, the ISL criterion in (34) is rewritten as [40] 

 ISLIV, D5 a
N21

k52 1N212
k20

a 1
vb2va

b eV 0 zlr
*Jkx| 1v 2 0 2dv
|zlr

* x|lr|
2 ,  (36)

where zlr refers to the receive filter for Doppler bin l r  and 
x| 1v 2  denotes the Doppler shifted waveform (according to 
Doppler frequency v ). When the Doppler uncertainty inter-
val V  becomes larger, the minimum achievable value of 
ISLIV, D could become significantly greater than that of ISLIV.
Intuitively, this is due to the fact that the designs based on 
ISLIV, D are more conservative, as they try to optimize the 
ISL metric averaged over the entire set V. For this reason, 
the IV approach does not perform well when Doppler effects 
are nonnegligible. 

ITERATIVE ADAPTIVE APPROACH
To provide higher resolution in the nonnegligible Doppler 
case, at the cost of increased computational complexity at the 
receiver, we now explore a more advanced estimation tech-
nique. The iterative adaptive approach (IAA), first presented 
in [41], was shown to offer improved resolution and interfer-
ence rejection performance. IAA is a nonparametric and user 
parameter-free weighted least-squares algorithm. In [41], IAA 
was shown to perform well for applications in channel esti-
mation, radar and sonar range-Doppler imaging, and passive 
array sensing. Whereas some data-adaptive algorithms 
require a significant number of snapshots to obtain accurate 
target estimates, IAA was shown to achieve good performance 
even with a single data vector. We briefly summarize the 
algorithm here. 

Consider the model for yrr in (3). The goal of IAA is to mini-
mize the following weighted least-squares cost function with 
respect to a target of interest krr, lr

7yr r2kr r, lrx|lr 7Qrr, lr
21

2 ,  (37)

where 7u 7Q21
2 ! u*Q21u. The interference covariance matrix for 

a target of interest krr,lr is denoted by Qrr,lr, and is defined 

Qrr,lr5RIAA 1r r2 2 |krr, lr|
2x|lrx|lr

*,  (38)

where 

[FIG6] Ambiguity function of a length N5 36 CAN function.
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RIAA 1r r 2 5 a
N21

r52N11
a

L

l51

0 krr1r,l 0 2Jrx|lx|l
*Jr

T. (39)

The weighted least-squares estimate for a target of interest 
krr, lr, after some simplification, is given by 

k̂rr,lr5
x|lr

* 1RIAA 1r r2221yrr

x|lr
* 1RIAA 1r r2221x|lr

, l r5 1, c, L, r r5 1, c, R. (40)

Since the estimate in (40) depends on the covariance matrix 
RIAA 1r r 2 , which in turn depends on the target amplitudes, the 
algorithm uses an iterative approach, which is summarized in 
Table 2. The target coefficients are initialized using the 
matched filter approach outlined in the section “Matched 
Filter.” To estimate targets in other range bins, we simply 
redefine yrr, which represents 
the N  length signal vector 
aligned with the received 
reflection from a range bin of 
interest r r. IAA typically con-
verges after about ten itera-
tions (which corresponds to 
T IAA5 10 in Table 2); a local convergence proof for IAA is 
offered in [42]. 

REGULARIZED IAA
In applications involving multiple receive antennas (which 
permits the use of steering beams), the angular scanning 
region, relative to a system’s antenna array, might be 
reduced from the entire range (e.g.,2908 to 908) to a region 
of interest (e.g.,2308 to 308). Although a reduction in the 
size of the angular grid would certainly provide computa-
tional advantages at the receiver (fewer targets that would 
require an estimate), such a reduction would inevitably lead 
to a higher condition number for the covariance matrix R
in (39) (and eventually threaten the invertibility of R). To 
account for targets that lie outside the scanning region and 
to also allow for any noise in the received signal, which is 
not explicitly considered in (39), we might sometimes con-
sider regularization of R  with a diagonal matrix S.

An approach described as IAA-Regularized (IAA-R) was 
presented in [42] to automatically compute the noise pow-
ers in S.  In this way, IAA-R fits entirely within the user 
parameter-free framework of IAA. At a cost of increased 
computational complexity (since now the noise powers 
must also be computed iteratively), IAA-R was shown to 
outperform the original IAA for applications in MIMO radar 
imaging. Further details and examples can be found in [42]. 

NUMERICAL EXAMPLES
In this section, we will provide several numerical examples to 
objectively demonstrate the performance of the aforemen-
tioned approaches to transmit waveform synthesis in various 
active sensing applications. Further, we will seek to clarify the 
advantages and disadvantages of the different receive filters 

described in the section 
“Receiver Design.” 

EXAMPLE 1
First, we aim to illustrate 
the  improved est imat ion 
performance that can result 

by using signals (specifically the CA sequences depicted 
in the section “The CA Algorithm”) with low autocorre-
lation. Consider an FIR channel impulse response with 
40 randomly generated channel taps. Similar to other 
active sensing applications, the goal of channel estima-
tion is to successfully determine the unknown channel 
taps. At the transmitter, we adopt a probing pulse of 
length N5 200.  The noise in the received signal is 
assumed to be independent and identically distributed 
(i.i.d.) complex Gaussian noise with zero mean and vari-
ance given by s2.  Using a matched filter at the receiver 
to estimate the channel taps, we can compare the per-
formance of a P4 and CA transmit sequence. We assume 
that the length of the channel is known, so that P5 40 
in the signal design stage. 

In Figure 7, we show the mean-squared error (MSE) of the 
channel estimate when the noise variance s2 is varied from 
1026 to 1. We perform 500 Monte Carlo trials for each noise 
level. Owing to its better autocorrelation properties, the CA 

[TABLE 2] IAA FOR RANGE-DOPPLER IMAGING.

INITIALIZE (t 5 0)

k̂rr,lr
102 5 1

N x|lr
*yrr, l r5 1, c, L, r r5 1, c, R

REPEAT (t 5 t 1 1)
 FOR r9 5 1, . . . , R

RIAA
1t2 1r r2 5 aN21

r52N11aL

l51
0 k̂rr1r,l
1t212 0 2Jrx

|
l x
|

l
*Jr

T

  FOR l9 5 1, . . . , L

k̂rr, lr
1t2 5

x|lr
* 1RIAA

1t2 1r r2221yrr

x|lr
* 1RIAA

1t2 1r r2221x|lr  END FOR 
 END FOR 
UNTIL (t 5 TIAA)

ADVANCES IN COMPUTING POWER 
WILL CONTINUE TO HERALD NEW 
AND IMPROVED APPROACHES TO 

WAVEFORM DESIGN.

[FIG7] MSE of estimate for FIR channel with N5 200. 
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transmit sequence significantly outperforms the P4 signal for 
smaller values of s2.

EXAMPLE 2
When the number of range bins in an application exceeds the 
length of the transmit sequence, the CAN approach (described 
in the section “The CAN Algorithm”) can be used to generate 
waveforms with minimum correlation values across all lags. For 
this example, we will use a SISO radar system to perform range 
profiling of a scene. In doing so, we seek to highlight the CAN 
waveforms, as well as to motivate the need for better receiver 
design. We consider a scenario with R5 512 equally spaced 
range bins. We place three stationary (negligible Doppler effects) 
targets in the scene: one target at range bin 200 with amplitude 
27 dB, one target at range bin 308 with amplitude 217 dB, and 
one target at range bin 320 with amplitude 0 dB. The transmit 
waveforms are designed with N5 256. We will assume circular-
ly symmetric i.i.d. additive complex Gaussian noise with zero-

mean and variance s2. The SNR, in decibels, is defined as 
SNR5 10log10 11/s2 2 , and is set to 20 dB. True target locations 
are indicated on each of the figures using an “O.” 

The result using a Frank sequence and a matched filter 
at the receiver is shown in Figure 8(a). As evidenced, the 
two stronger targets are successfully identified using this 
scheme. The third, weaker target, however, appears within 
the sidelobes of the strongest target, and the matched filter 
does not produce a peak at the true target location. In 
Figure 8(b), we again use a matched filter, but now transmit 
a CAN waveform. Since R . N  for this imaging example, 
we choose a CAN sequence, as opposed to a CA sequence, to 
effectively minimize all correlation lags in the waveform 
synthesis stage. For this case, sidelobes are reduced, and a 
peak is now discernible at the location of the weakest tar-
get. We use CAN waveforms for the remaining figures. 

We adopt an IV receive filter (with length N ) in Figure 
8(c). Compared to the matched filter result in Figure 8(b), 

APPENDIX A
The CAN and PeCAN approaches, which were described in the 
sections “The CAN Algorithm” and “The Periodic Correlation 
Case,” respectively, are closely related to the GSA that was 
introduced more than 35 years ago for applications in optics 
research (note that the cyclic approach described as GSA can 
also be found in an earlier paper [47], in which a proof of con-
vergence is also provided). In this appendix, we will highlight 
the similarities and clarify the relationship between these 
waveform design algorithms and GSA. 

GSA
Let x be an N 3 1 vector and consider minimizing the follow-
ing criterion with respect to x:

C 1x 2 5 a
K

k51

3 |ak
*x|2 dk 42, (41)

where dk [ R1 and ak [ CN31 are given and K is an integer 
that typically satisfies K $ N. In some applications, the vector 
x is free to vary in CN31 (see, e.g., [48]). In other applications x
is constrained to a certain subset of CN31, such as to the set of 
vectors with unimodular elements. To take this fact into 
account, we let x [ S # CN31.

The GSA was introduced in [28] for tackling recovery prob-
lems typically involving a sequence and its Fourier transform. 
When used for problems that can be formulated as in (41), 
GSA has the following form: 

Step 0: Given initial values 5ck
06k51

K  (5ck6  are auxiliary vari-
ables; see below for details), iterate Steps 1 and 2 below, for 
i5 0, 1, c until convergence. 

Step 1: xi5 arg minx[SaK

k51
|ak

*x2 dke
jck

i

|2. (42)

Step 2: ck
i115 arg 1ak

*xi 2  and i d i1 1.
The algorithm is useful when the minimization problem in 

Step 1 has a closed-form solution, which is obviously true for 
S5CN31, but also for some significant instances of constraint 
sets (see, e.g., [24] and [35]). 

Note that [28] proposed the above algorithm on heuristic 
grounds, without any reference to the minimization of 
C 1x 2  in (41). However, it was later shown in [49] that GSA is 
a minimization algorithm for (41) that has the appealing 
property of monotonically decreasing the criterion as the 
iteration proceeds. A simple proof of this fact is as follows: 

C 1xi 2 5 a
K

k51

3 0 ak
*xi 0 2 dk 425 a

K

k51

0 ak
*xi2 dke

jck
i11 0 2

$ a
K

k51

0 ak
*xi112 dke

jck
i11 0 2

$ a
K

k51

0 ak
*xi112 dke

jck
i12 0 25 C 1xi112 ,  (43)

where the first inequality is due to Step 1 and the second 
inequality is due to Step 2 (these inequalities are strict if the 
solutions computed in Steps 1 and 2 are unique, which is usu-
ally the case in applications). 

The calculation in (43) provides a way to motivate GSA as a 
minimization algorithm for C 1x 2 . In the following, we outline 
a way to derive GSA as a minimizing procedure for C 1x 2 .

Let c denote a K 3 1 vector of auxiliary variables and let 
D 1x,c 2  be a function which has the property that 

min
c

D 1x, c 2 5 C 1x 2 . (44)

Then, under rather general conditions, the x that minimizes 
C 1x 2  is the same as the x obtained from the minimization of 
D 1x, c 2  with respect to both x and c. Evidently, for this 
approach to be useful the minimization of D 1x, c 2  should be 
easier to handle than that of C 1x 2 . To use the above idea in 
the present case of (41), we let 

D 1x, c 2 5 a
K

k51

0 ak
*x2 dke

jck 0 2, (45)

where c is the vector made from 5ck6k51
K . We note that the 

above function has the required property 
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IV is able to further suppress sidelobe levels and to form 
well-separated peaks at each of the true target locations 
(with a negligible increase in computation). IAA (whose 
result is not shown) achieves similar performance to the IV 
filter, but at the cost of increased computational efforts at 
the receiver. 

EXAMPLE 3
We now simulate an angle-range synthetic aperture radar 
(SAR) imaging example using a MIMO antenna scheme (e.g., 
an airborne radar that scans a ground scene with stationary 
targets). For this application, we will demonstrate the 
 performance of the IAA approach for receiver design and fur-
thermore showcase the CA sequence sets described in the 
section “Sequence Sets.” To extend the received signal model 
given in (3) (as well as the receiver designs offered in the sec-
tion “Receiver Design”) to the MIMO case, please refer to [42] 
and [26]. The MIMO system under consideration contains a 

uniform linear array with five transmit antennas spaced at 
2.5l0 and five receive antennas spaced at 0.5l0, where l0

denotes the carrier wavelength of the system. In this way, i.e., 
with a sparse transmit array and filled receive array, we effec-
tively create a filled virtual array with NM5 25 antennas 
[43]–[45]. The radar collects data at five positions, with 
12.5l0 separation between each position. The ground truth 
consists of 16 targets, with amplitude 0 dB, placed randomly 
(both in angle and range) within R5 24 range bins. True tar-
get locations are again indicated on each of the figures using 
an “O,” where now each symbol is colored according to its 
corresponding amplitude. We let the angular scanning region 
range from2308 to 308 with 18 grid size. We will use a CA 
sequence set for transmission with a length of 128. The SNR 
is 40 dB, where we assume i.i.d. circularly symmetric com-
plex Gaussian noise. 

We show the angle-range imaging results in Figure 9. At the 
receiver, we use a matched filter in Figure 9(a). To improve 

min
c

D 1x,c 2 5min
c a

K

k51

3 0 ak
*x 0 21 dk

22 2 0 ak
*x 0dkcos 1arg 1ak

*x 2 2ck 24
5 a

K

k51
[ 0 ak

*x 0 2 dk 425 C 1x 2 . (46)

The minimization of D 1x, c 2  with respect to x (unconstrained 
as in [48] or constrained as in [24]) for fixed c and, respectively, 
with respect to c for fixed x has simple closed-form solutions. 
Consequently D 1x, c 2 , and hence C 1x 2 , can be minimized con-
veniently via a cyclic algorithm in which c is fixed to its most 
recent value and D 1x, c 2  is minimized with respect to x, and 
vice versa. The so-obtained algorithm is nothing but the GSA in 
(42) and its property in (43) follows immediately from (44) and 
the fact that the cyclic minimization of D 1x, c 2  yields the fol-
lowing monotonically decreas ing sequence of criterion values: 
C 1xi 2 5D 1xi, ci11 2 $D 1xi11, ci12 2 5 C 1xi11 2 .

The general approach based on (45) can be applied to other 
problems for which it can lead to algorithms that have little, if 
anything, in common with GSA (see, e.g., [50]). 

CAN AND PeCAN
The central problem dealt with in [24] and [35], as well as in the 
sections “The CAN Algorithm” and “The Periodic Correlation 
Case,” was the design of a code sequence with impulse-like 
aperiodic and, respectively, periodic correlations. A main result 
proved in these papers was the fact that the said problem can 
be reduced to that of minimizing a criterion of the form 

C|1x2 5a
K

k51

3 0 ak
*x 0 22 dk

2 42,  (47)

for a certain K, 5ak6, and 5dk6. In the context of the section 
“The CAN Algorithm” [see (17)], K5 2N, ak5 3e juk ce jukN 4T,
and dk5"N (where uk5 2pk/2N, for k5 1, c, 2N ). 

The criterion in (47) might seem rather similar to C 1x 2  in (41), 
but in fact there are important differences between these two 
criteria. A first difference is that (44)–(46) obviously do not hold 

for C| 1x 2 . Consequently one cannot derive a GS-type algorithm 
for (47) by following the approach based on (44) and (45). Of 
course, we could use a D| 1x, c 2  defined as 

D| 1x, c 2 5 a
K

k51

0 1ak
*x 222 dk

2e jck 0 2 (48)

for which it holds that minc D| 1x, c 2 5 C| 1x 2 ,  as required. 
However, the minimization of D| 1x, c 2  is not easier than that 
of C| 1x 2 .

To get around the above problem, a principal observation 
made in [24] and [35] was that, under certain conditions, the 
minimization of (47) is almost equivalent (in a sense specified in 
[35]) to that of D 1x, c 2  in (45). Using this observation and the 
minimization approach outlined in the paragraph following 
(46), the CAN and PeCAN algorithms were introduced in [24] 
[35] for minimizing D 1x, c 2  (see the sections “The CAN 
Algorithm” and “The Periodic Correlation Case,” respectively). 
These algorithms have the same form as the GSA in (42). 
However, note that now the minimization of D 1x, c 2  does not 
necessarily provide a solution to the problem of minimizing 
C| 1x 2 . In particular, a second difference between the criteria 
C 1x 2  and C| 1x 2  is that the algorithms do not guarantee that the 
criterion C| 1x 2  monotonically decreases as the iteration proceeds 
(only D 1x, c 2  is monotonically decreased by each iteration). 

Finally, we remark on the fact that the weighted CAN and 
multivariate CAN algorithms (introduced in [24] and [27] and 
reviewed in the sections “The CA Algorithm” and “Sequence 
Sets,” respectively), although related to GSA in their basic prin-
ciples, have a weaker connection to GSA than CAN and PeCAN. 
These algorithms, which have been obtained by means of the 
“almost equivalent” minimization approach mentioned in the 
previous paragraph, can be viewed as extensions of GSA to 
problems that have more involved forms than (41) (these prob-
lems, as considered in [24] and [27], are associated with the 
design of sequences with more complex correlations than an 
impulse-like shaped one). 
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 resolution, we apply IAA-R to the received signal in Figure 9(b). 
Since the scanned angular region is reduced from 1808 to only 
cover a region of interest (for computational purposes), we 
apply the regularized version of IAA to account for interferences 
outside the scanning region. As shown, the targets are clearly 
identifiable using IAA-R (in fact, a perfect result is obtained). 

EXAMPLE 4
Finally, we will consider range-Doppler imaging using a SISO 
radar system (or, equivalently for our simulation, a SISO sonar 
system). By incorporating an example with nonnegligible 

Doppler effects, we hope to demonstrate the need for the IAA 
algorithm addressed in the section “Iterative Adaptive 
Approach” (an advanced, more computationally demanding 
approach to receiver design). The  intrapulse Doppler shift of a 
target is represented by Fl5v lN 11808/p 2 , where l5 1, c, L.
The scene contains R5 100 equally spaced range bins and 
L5 37 Doppler bins with 58 separation between bins (we define 
V  by setting F152908 and FL5 908). We consider three tar-
gets in the scene. The first target is located at range bin 60 with 
Doppler shift 2108 and amplitude 10 dB. The second and third 
targets have Doppler shift 108 and amplitude 30 dB, and are 
located at range bin 40 and range bin 65, respectively. The SNR 
is set at 10 dB (relative to a target of amplitude 0 dB and again, 
assuming circularly symmetric i.i.d. noise). We use a CAN 
transmit waveform of length N5 36. 

The imaging result obtained using a matched filter at the 
receiver is shown in Figure 10(a). As shown, the matched filter 
fails to provide a peak at the location of the weakest target. The 
IV filter (whose result is omitted) shows similar performance 
compared to the matched filter for this nonnegligible Doppler 
case. The IAA result is shown in Figure 10(b). Compared to the 
matched and IV filters, IAA significantly reduces sidelobes and 
produces a peak at each of the true target locations (again, at 
the cost of increased computation). 

[FIG9] MIMO angle-range images for CA transmit sequences 
with N5 128, SNR 5 40 dB, and using (a) a matched filter and (b) 
IAA-R. Results shown are in dB. True target locations are 
indicated by “O.”
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[FIG8] Range profiles for N 5 256, SNR 5 20 dB, and using 
(a) a Frank sequence with a matched filter at the receiver, 
(b) a CAN sequence with a matched filter at the receiver, and 
(c) a CAN sequence with an IV receive filter. “O” denotes a 
true target location. 
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CONCLUSIONS
For decades, researchers have sought to improve the perfor-
mance of active sensing systems by designing transmission 
sequences with better correlation properties. Many sequences 
exhibit perfect periodic correlation, which is desired for some 
applications in communications and imaging. Other applica-
tions, including radar and sonar, demand waveforms with 
improved aperiodic properties. Due to the difficult computa-
tional nature of this problem, the design of sequences with 
good aperiodic correlation has remained an unsolved and 
largely evolving research field. In this article, we have provided 
a brief tutorial of several cyclic algorithms that can be used to 
efficiently generate sequences and sequence sets with superior 
auto- and cross-correlations. We described how this cyclic 
approach to waveform design can be extended to design per-
fect periodic waveforms. When further improvements in reso-
lution and interference suppression are needed and cannot be 
met in the signal design stage, better signal processing at the 
receiver is required. At the expense of a loss in SNR, IV receive 
filters, which can be precomputed offline, can provide im -
proved performance in the negligible Doppler (stationary tar-
get) case compared to a matched filter. When motion is 
present in the scene, IAA, at the cost of increased computa-
tional burden, was shown to produce higher resolution and 
more accurate target estimates. 

Advances in computing power will continue to herald new 
and improved approaches to waveform design. While we have 
focused herein on the construction of signals with good corre-
lation properties, this method of sequence design does not 
account for the Doppler properties of waveforms, which are 
instead represented by the well-known ambiguity function. 
The design of signals with specific range-Doppler characteris-
tics is a computationally challenging and application-specific 
task, and will certainly remain the frontier of research in this 
field for years to come. In addition, with the increasing popu-
larity of MIMO communications and MIMO radar, we can cer-
tainly expect future work to continue to focus on the design of 
sequence sets with good auto- and cross-correlations, a previ-
ously prohibitive (computationally) research area. 
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M
edical image registra-
tion [1] plays an in -
creasingly important 
role in many clinical 
applications, including 

the detection and diagnosis of diseases, 
planning of therapy, guidance of inter-
ventions, and the follow-up and moni-
toring of patients. The primary goal of 
image registration is to find correspond-
ing anatomical or functional locations in 
two or more images. This has many 
applications: registration can be applied 
to images from the same subject 
acquired by different imaging modalities 
(multimodal image registration) or at 
different time points (serial image regis-
tration). Both cases are examples of 
intrasubject registration since the imag-
es are acquired from the same subject. 
Another application area for image regis-
tration is intersubject registration, 
where the aim is to align images 
acquired from different subjects, e.g., to 
study the anatomical variability within 
or across populations.

While rigid registration has become a 
widely used tool in clinical practice, non-
rigid registration has not yet achieved 
the same level of clinical acceptance. 
Much recent progress has been made, 
however, in developing improved non-
rigid registration techniques. In this 
article, we will illustrate some of the 
advances that have been made over 
recent decades. We will discuss some 
of the theoretical aspects of nonrigid 
registration and describe methods for 
their implementation. Finally, we will 
illustrate how common problems in 
medical imaging, such as motion correc-
tion and image segmentation, can be 
solved using image registration.

METHODS
In general, the process of image regis-
tration involves finding the optimal 
geometric transformation that maxi-
mizes the correspondences across the 
images. This involves the following  
components (see Figure 1):

A transformation model ■  that 
defines a geometric transformation 
between the images. There are several 
classes of nonrigid transformations 
including parametric and nonpara-
metric models. Some of these models 
are well suited for small deformations 
while others can represent large 
deformations. 

A similarity metric ■  that measures 
the degree of alignment between the 
images. In cases where features such 
as landmarks, edges, or surfaces are 
available, the distances between corre-
sponding features can be used to mea-

sure the alignment. In other cases, 
the image intensities can be directly 
used to measure the alignment. 

An optimization method ■  that maxi-
mizes the similarity metric. Like 
many other problems in medical 
imaging, nonrigid registration can be 
formulated as an optimization prob-
lem whose goal it is to maximize an 
associated objective function.
In addition, a careful validation must 

be performed to assess measures of per-
formance, such as accuracy and robust-
ness, as well as in application-specific 
terms, such as clinical utility. In the fol-
lowing, we will describe the individual 
components of nonrigid registration 
techniques in more detail.

TRANSFORMATION MODELS
The transformation model used in the 
registration defines how the coordinates 

Nonrigid Registration of Medical Images: 
Theory, Methods, and Applications

 Digital Object Identifier 10.1109/MSP.2010.936850

Input: Pre-
and Postcontrast

MR Images

Output: Visualization
of Contrast

Agent Uptake

Optimization

Transformation Model Similarity Metric

[FIG1] Illustration of the components of a generic nonrigid image registration 
algorithm: The transformation model, the similarity metric and the optimization 
technique. This example shows the application of nonrigid registration for the 
motion correction of contrast-enhanced MR images [2].
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of two images are related. For a pair of 
images iA  and iB , this is often 
expressed as a single coordinate trans-
formation T, mapping each point x in 
iA  to an anatomically corresponding 
location T 1x 2  in iB. Some transforma-
tions require only translation, rotation, 
or scaling and, in this case, the output 
coordinates of T 1x 2  can be written as a 
linear combination the input coordi-
nates for some fixed global set of linear 
weights. In the case of nonrigid regis-
tration, no such global linear model can 
be formulated, and it is common to 
optimize a spatially varying displace-
ment field u to express the transforma-
tion, i.e.,  T 1x 2 5 x1 u 1x 2 .  Typical 
requirements of a nonrigid transforma-
tion are that it is smooth and invertible, 
i.e., that it does not lead to effects such 
as tearing or collapsing regions to a 
point. Such requirements reflect the 
variations in anatomy where changes in 
size and shape are common but changes 
in topology are rare.

As an illustration of some of the 
aspects of nonrigid transformation mod-
els, we describe the widely used free-
form deformations (FFDs) that were 
developed within the computer graphics 
and computer-aided design communities 
and now also have an established role in 
medical image registration [2]. An FFD 
is defined by a set of displacement vec-
tors associated with the points of a dis-
crete three-dimensional (3-D) lattice. A 
blend of the vectors is used to define the 
displacement at a general location in the 
image with nearer vectors having a 
greater influence. The blending weights 
are determined by a weighting function 
and spline functions, such as B-splines, 
are often used.

FFDs are an example of parametric 
transformations and contrast with 
 nonparametric transformations where a 
displacement vector is associated with 
every voxel in the image (a voxel is a 
volume element, the 3-D analogy of a 
pixel). FFDs are geometric in their con-
struction, but it is possible to derive 
transformations from more physical 
models such as fluid [3], diffusion [4], 
or elastic models [5]. FFDs are also an 
example of small deformation models 

that are suitable for modeling, say, grad-
ual changes in anatomy. In some appli-
cations, such as the deformations of 
cardiac muscle, a large deformation 
model, such as that derived from a flow 
field, can be more appropriate. 

In the case of fluid-based transfor-
mation models, the registration no 
longer seeks to optimize the displace-
ments at each location directly but 
instead estimates a velocity field that is 
used to provide the displacement. In 
this case, the corresponding points x
and T 1x 2  represent the start and end 
points of a flow determined by the 
velocity. This can be a challenge to 
optimize, especially given that the 
velocity field may be allowed to vary 
over time as well as space.

SIMILARITY METRICS
The second component of a registra-
tion algorithm is the registration basis 
that measures the degree of alignment 
of the images. The two main approach-
es are feature-based and voxel-based 
similarity measures. Feature-based 
registration approaches usually utilize 
points, lines, or surfaces and aim to 
minimize the distance between the 
corresponding features in the images. 
An advantage of feature-based registra-
tion is that it can be used for both 
mono- and multimodality registration, 
but the need for a feature extraction 
step, in the form of landmark detection 
or segmentation, can be onerous. 
Moreover, any error during the feature 
extraction stage, whether manual or 
automated, will adversely affect the 
registration and cannot be recovered at 
a later stage. It is possible to avoid 
such errors by using the image inten-
sities directly without the need for fea-
ture  extract ion.  This  re l ies  on 
voxel-based similarity measures that 
aim to measure the degree of shared 
information in the image intensities. 

This is relatively simple in the case of 
mono-modality registration but more 
complex for multimodality registra-
tion. Over the last decade, voxel-simi-
larity measures have become the 
method of choice for measuring image 
alignment, largely due to their robust-
ness and accuracy.

The simplest statistical measure of 
image similarity is based on the squared 
sum of intensity differences (SSD) 
between images iA and iB,

sSSD52
1
na 1iA 1x22iB 1T 1x222 2, (1)

where x is a point in image iA, T 1x 2  is 
the corresponding location in ib  and 
n is the number of voxels in the over-
lap region. This measure is based on 
the assumption that both imaging 
modalities have the same characteris-
tics. If  the images are correctly 
aligned, the difference between them 
should be zero except for noise, and 
the SSD measure can be shown to be 
optimal if this noise is Gaussian. Since 
this similarity measure assumes that 
the imaging modalities are identical, 
their application is restricted to mono-
modal applications.

The assumption of identical imaging 
modalities can, however, be too restric-
tive. A more general approach assumes a 
linear relationship between the image 
intensities. In this case, the similarity 
between both images can be expressed by 
the normalized cross correlation (NCC) 
shown in (2) at the bottom of the page, 
where mA and mB correspond to the aver-
age voxel intensities in each image. While 
more flexible than SSD, the application of 
this similarity measure is nevertheless 
largely restricted to mono-modal regis-
tration tasks. 

There has been significant interest 
in measures of alignment based on 
the information content or entropy of 
the registered images. An important 

sCC5
a 1iA 1x 2 2mA 2 1iB 1T 1x 22 2mB 2

ÅaaiA 1x 2 2mAb
2aaiB 1T 1x 2 2 2mBb

2
, (2)
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 component of these methods is the fea-
ture space of the image intensities that 
may be interpreted as a joint probability 
distribution. A simple way of visualizing 
this feature space is by accumulating a 
two-dimensional histogram of the 
 co-occurrences of intensities in the two 
images for each trial alignment (Figure 
2). By varying the degree to which the 
images are aligned, it can be shown 
that the feature space disperses as mis-
alignment increases and that each 
image pair has a distinctive feature 
space signature at alignment. 

In an information theoretic frame-
work, the information content of images 
iA  and iB  can be defined by their 
Shannon-Wiener entropy 

H 1iA 2 5 2 a
a

p 1a 2 log p 1a 2  (3)

and

H 1iB 2 5 2 a
b

p 1b 2 log p 1b 2 , (4)

where p 1a 2  is the probability that a voxel 
in image iA has intensity a and p 1b 2  is 
the probability that a voxel in image iB

has intensity b.  The joint entropy 
H 1iA, iB 2  of the overlapping region of 
images iA and iB may be defined by 

H 1iB, iB 2 52a
a
a

b
p 1a,b 2 logp1a,b2 ,

 (5)

where p 1a, b 2  is the joint probability 
that a voxel in the overlapping region of 
image iA and iB has values a and b,
respectively.

To quantify image alignment, one can 
use measures from information theory 
such as mutual information (MI) [6], [7]. 
MI is defined in term of entropies as 

sMI 1iA;iB 25H 1iA 21H 1iB 22H 1iA,iB2
 (6)

and should be maximal at alignment. MI 
is a measure of how one image “explains” 
the other but makes no assumption of 
the functional form or relationship 
between image intensities in the two 
images. Studholme [8] showed that MI 
can be affected by the degree of overlap 

between two images. Studholme [8] and 
Maes et al. [6] suggested the use of nor-
malized MI (NMI) as an alternative mea-
sure one form of which may be written 

sNMI 1iA;iB 2 5 H 1iA 2 1H 1iB 2
H 1iA,iB 2 . (7)

IMPLEMENTATION: OPTIMIZATION 
AND INTERPOLATION
The registration task seeks to identify the 
transformation parameters that maxi-
mize the similarity measure derived from 

the two images. In certain special cases, 
such as the rigid registration of pairs of 
corresponding landmarks, it is possible 
to analytically estimate the optimal 
transformation (in a least squares sense). 
Such an example is, however, exceptional 
as the majority of registrations are voxel-
based registrations and these typically 
rely on numerical methods to find the 
optimal parameters. 

In the case of nonrigid transforma-
tions, the number of parameters or de-
grees of freedom can be very high. For 
example, an FFD with a cubic control 
point lattice and ten control points along 
each side has 10 3 10 3 10 3 35 3,000 
parameters to optimize with respect to 

the similarity metric. Many optimization 
methods, such as Newton or conjugate 
descent approaches, require the estima-
tion of the similarity measure’s gradient 
with respect to the parameters and sec-
ond-order methods may also require an 
estimate of its Hessian. For some simi-
larity measures, such as sSSD or sCC, an 
explicit expression for the gradient may 
be derived. This can remain possible for 
more complex entropy-based measures 
such as sMI,  but the computational 
overhead of evaluating them can make 
numerical schemes of gradient approxi-
mation more attractive. In the case of 
the Hessian, even numerical estimation 
can be computationally expensive for 
every iteration and techniques for 
 avoiding its direct estimation are 
often exploited. 

As a function of the transformation 
parameters, the similarity metric 
defines a hypersurface in a typically 
high-dimensional space (3,000 dimen-
sions in the earlier example). This pres-
ents a challenge to the optimization as 
the surface is likely to be highly non-
convex with multiple local maxima and 
a number of approaches have been 
developed to help identify a globally 
optimal set of parameters. Notable 
examples include coarse-to-fine ap -
proaches, where image pyramids at dif-
ferent scales are used instead of the 
original images with transformations at 
coarser levels of detail optimized first 
and used as an initialization for the 
subsequent stages with finer details. 
As an alternative to gradient-based 

THE PRIMARY GOAL OF 
IMAGE REGISTRATION IS 

TO FIND CORRESPONDING 
ANATOMICAL OR 

FUNCTIONAL LOCATIONS IN 
TWO OR MORE IMAGES.

Motion Tracking Via Nonrigid Registration
4-D Motion

Reconstruction

[FIG2] Tracking change over time in a sequence of tagged MR images for the 
4-D estimation of myocardial motion.
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optimization methods, it is also possi-
ble to discretize the parameter space 
entirely and apply techniques such as 
linear programming. 

One aspect of many registration 
approaches is that they are expressed 
asymmetrically. To evaluate the similar-
ity measure for the images, it is com-
mon to loop over the voxels in the first 
(“target”) image, identifying the corre-
sponding locations in the second 
(“‘source”) image under the current 
transformation estimate. Each target-
source intensity pair is then used to 
estimate the similarity. It is unlikely for 
each location in the target voxel lattice 
to correspond directly to a source voxel 
and it is much more likely to corre-
spond to an intermediate location 
within the source voxel lattice. This 
necessitates the interpolation of one of 
the images (the source), hence the 
asymmetry in the model. 

If, for example, a linear interpolation 
scheme is applied, the source image 
effectively undergoes a low-pass filtering 
step and the associated loss of detail can 
have an effect on the registration. In 
practice however, such effects are small, 
especially if an image pyramid is used in 
a multiresolution scheme. Other more 
complex interpolation schemes can of 
course be applied, such as sinc interpo-
lation or higher-order splines, but there 
is a tradeoff between interpolation accu-
racy and computational burden that 
needs to be taken into account. 

Some approaches attempt to sym-
metrize the registration by looping 
over both source and target voxels, 
using the inverse transformation to 
obtain interpolated values from the tar-
get image. Again, computational load 
becomes an issue here as there may be 
a significant cost to inverting the trans-
formation, and it may be difficult to 
accurately estimate its inverse. 

VALIDATION OF REGISTRATION
Prior to clinical use, medical image reg-
istration algorithms need to be validat-
ed in terms of their accuracy in 
establishing correspondence between 
images. However, the validation of reg-
istration performance usually suffers 

from the lack of knowledge as to wheth-
er, how much, and where patient move-
ment has occurred between and even 
during scanning procedures, and 
whether such movement affects the 
clinical usefulness of the data. To main-
tain clinical usefulness, and to inher-
ently improve patient treatment and 
health care, it is therefore vital to 
ensure that registration is successful. 

A registration method can be 
assessed by independent evaluation in 
the absence of a ground truth corre-
spondence estimate. An initial visual 
inspection allows for a qualitative assess-
ment of registration performance, which 
can be complemented by quantitative 
checks for robustness and consistency. 
Robustness checks establish the mea-
surement precision by testing the bias 
and sensitivity after, for example, adding 
noise or choosing different starting esti-
mates. Consistency checks assess the 

capability of a registration technique to 
find circular transformations based on a 
registration circuit but can be sensitive 
to bias and may not be applicable to 
noninvertible transformations generated 
by many nonrigid registration methods. 
Nonetheless, consistency checks have 
been successfully used for intramodality 
rigid body registration applications, e.g., 
for serial magnetic resonance (MR) 
imaging of the brain. The methods 
available to an expert observer perform-
ing a visual assessment of registration 
 performance include the inspection of 
subtraction images, contour or segmen-
tation overlays, alternate pixel displays, 
or viewing anatomical landmarks. These 
approaches have been applied to rigid 
registration, and since they involve 
inspection of the entire volume domain 
of the image pair, can be extended to 
nonrigid registration. For nonrigid 

 registration, expert visual assessment is 
an important step toward clinical accep-
tance and routine use but locally 
implausible deformations, not readily 
picked up by observers, represent a sig-
nificant challenge. Nonetheless, visual 
assessment often forms the first and 
last line of defence of any image regis-
tration validation. 

In the absence of a ground truth 
transformation, registration accuracy 
can be studied by setting up a gold 
standard transformation. For example, 
the retrospective registration evalua-
tion project (RREP) used skull-im-
planted markers in patients undergoing 
brain surgery to derive a gold standard 
transformation for multimodality rigid-
body image registration of the head to 
compare different established rigid reg-
istration methods [9]. For nonrigid reg-
istration validation, extrinsic markers 
cannot easily be used as they would 
need to be implanted into soft tissue. In 
an alternative approach [10], a biome-
chanical motion simulator was intro-
duced that modeled physically plausible 
deformations of soft tissue for clinically 
realistic motion scenarios in an appli-
cation to contrast-enhanced MR mam-
mography. This motion simulator was 
designed to be independent of the 
image registration and transformation 
model used. 

Finally, the segmentation of anatom-
ical structures provides the means to 
measure structure overlap or surface 
distances before and after registration, 
but cannot provide insight into the reg-
istration accuracy away from the struc-
ture’s boundary, or along its outline. If, 
however, the objective of the registra-
tion is to propagate (and hence auto-
mate) segmentation, segmentation 
quality can be used as a surrogate mea-
surement. For example in [11] a number 
of nonrigid registration methods were 
compared for intersubject brain align-
ment based on their segmentation qual-
ity and a number of carefully annotated 
image databases (e.g., http://www.nirep.
org/) are becoming available that can be 
used to establish the accuracy of non-
rigid registration methods on the basis 
of carefully delineated image structures. 

A REGISTRATION METHOD 
CAN BE ASSESSED BY 

INDEPENDENT EVALUATION 
IN THE ABSENCE OF 
A GROUND TRUTH 
CORRESPONDENCE

ESTIMATE.
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APPLICATIONS OF 
NONRIGID REGISTRATION

TRACKING CHANGES OVER TIME
It is possible to apply the registration of 
medical images to identify changes in 
anatomies over time. The changes stud-
ied may last for short time intervals, 
such as muscle deformations in a cardi-
ac cycle, or they may last for years, 
such as gradual atrophy in an aging 
brain. Neural atrophy is an example of 
change that is diffuse and subtle com-
pared with, say, the rapid and dramatic 
growth of organs during fetal develop-
ment. Each of these scenarios present 
its own challenges when registration is 
used to characterize the associated 
change. In a longitudinal approach to 
measuring change, serially acquired 
images of a single individual may be 
registered to identify changes in the 
anatomy that may be of clinical inter-
est. This approach is in routine use for 
identifying atrophy of the brain due to 
aging or disease. 

In the case of serial images of the 
head, rigid registration and subtraction 
can provide a good indication of 
changes. Other forms of serial images, 
such as sequences of a beating heart, 
require nonrigid registration to charac-
terize the deformation of tissue over 
time (see Figure 2). In the case of serial 
brain MR images of elderly subjects, 
nonrigid registration may still be 
applied and the geometric properties of 
the nonrigid transformation between 
the images can provide quantitative 
local estimates of the tissue expansion 
or contraction that has taken place 
between the scans. This helps to identify 
which structures in the brain are most 
susceptible to pathology. 

In a cross-sectional approach, 
images are acquired from a number of 
subjects at varying temporal stages and 
intersubject registration may be used 
to factor out variability across subjects 
and to subsequently identify the salient 
changes in the images of the whole 
cohort over time. Example applications 
are the generation of a four-dimen-
sional (4-D) spatio-temporal atlas of an 
aging anatomy. 

MORPHOMETRY 
AND SEGMENTATION
Morphometry  can genera l ly  be 
described as the study of shape and, in 
the context of medical images, it can 
represent the direct comparison or 
modeling of the shapes of anatomical 
structures. D’Arcy Thompson used non-
rigid coordinate transforms to compare 
the forms of biological organisms in his 
seminal work at the start of the 20th 
century. The computational power now 
available and the tools of nonrigid reg-
istration allow the comparison of anato-
mies in general and anatomical 
structures in particular to be carried 
out systematically and on a large scale. 
For example, the expected shape of an 
anatomical structure and its variation 
over a population can be estimated and 
this information can be used in a clini-
cal setting to decide if a particular anat-
omy is representative or pathological. 

Nonrigid registration also enables 
more indirect approaches to morphom-
etry such as the neuroimaging methods 
known as voxel-based morphometry 
(VBM) and deformation-based mor-
phometry (DBM). In VBM, variations in 
tissue density are identified across a 
cohort of subjects after aligning all 
images to the a common template. The 
registrations used for alignment only 
aim to correct global changes in the 
anatomy. After alignment to a common 
template and subsequent smoothing, 
variations in tissue densities are used 
to identify group differences. DBM 
seeks to characterize the anatomical 
variation in a population in a similar 
fashion, i.e., by registering all images 
to a common template. However, in 
contrast to VBM, it typically uses a 
much more detailed registration of the 

different images. As a result of this, the 
differences between the anatomies are 
no longer visible in the images but are 
instead encoded in the transformations 
that align them. By studying the geomet-
ric properties of the deformations, such 
as their locally varying Jacobian tensors, 
group differences can be identified. 

Whether studying the shape proper-
ties of specific anatomical structures, or 
applying VBM or DBM, a segmentation 
step is needed. This can be used to delin-
eate the particular anatomical structure 
of interest or to identify the tissue or 
region of interest where the analysis is to 
be carried out. When delineating ana-
tomical structures, a trained human 
expert can provide very accurate seg-
mentations although this is a time-con-
suming and costly exercise. Automated 
segmentation is, by contrast, much faster 
and easier to carry out at the expense of 
a loss of accuracy. 

Registration can be used to bridge the 
gap between the manual and automatic 
approaches through an approach termed 
“atlas-based segmentation.” In this con-
text, an atlas is represented by an ana-
tomical image together with an expert 
manual labeling of the structure of inter-
est. When a new image of a different 
anatomy is obtained, registration can be 
used to align the atlas anatomy to the 
new image. The resulting transformation 
may then be used to transform the atlas 
label to the new image. The transformed 
label can then be treated as a segmenta-
tion estimate of the new image and, in a 
sense, the expertise of the human rater 
has been propagated automatically to the 
target image. 

Atlas-based segmentation is, how-
ever, prone to errors that can arise from 
a variety of sources such as errors in the 
original labeling or errors in the esti-
mated transformation between atlas and 
target. It has been shown that a multiat-
las approach to segmentation can over-
come much of this error and provide 
very accurate structural segmentations. 
In this state-of-the-art approach, instead 
of using single atlas, a repository of 
atlases are stored and each is separately 
registered with the target. The resulting 
set of transformations is used to 

RECENT ADVANCES 
IN GPU TECHNOLOGY 

HAVE THE POTENTIAL TO 
SIGNIFICANTLY ACCELERATE 

NONRIGID REGISTRATION 
AND OFFER THE POSSIBILITY 

OF NEAR REAL-TIME 
REGISTRATION.
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 propagate the labels for each atlas to the 
space of the target image. After propaga-
tion, a consensus segmentation of the 
target is obtained by combining the 
propagated labels using some scheme 
(see Figure 3). A simple vote scheme in 
which the label for a voxel (in or out of 
the structure) is determined according 
to the majority of the propagated labels 
has been shown to be highly effective. 

MOTION CORRECTION
There are a number of different imaging 
modalities available to the medical com-
munity. MR imaging in particular has a 
number of attractive properties in that 
it can distinguish between different 
types of soft tissue without exposing the 

subject to ionizing radiation. A draw-
back of MR imaging is the length of the 
acquisition time and, when the subject 
moves, this can lead to artifacts in the 
acquired image. The acquisition of a MR 
image represents a tradeoff among vari-
ous factors such as resolution, the qual-
ity of contrast between tissues, and the 
signal-to-noise ratio (SNR). For exam-
ple, it is possible to rapidly acquire a 
volumetric image but the resulting SNR 
will be low. A high SNR volume requires 
a long acquisition time in which the 
subject is more likely to move. It is pos-
sible, however, to acquire slice data rap-
idly and with reasonable quality, 
although a single slice only provides a 
restricted view of the anatomy. 

A particular and recent application 
in which images are affected by motion 
has been the in-utero imaging of fetal 
subjects and registration may be used 
to correct for the resulting artifacts. In 
this approach, a number of parallel 
slices of the fetus are acquired. Each 
individual slice is acquired quickly 
enough for motion to be negligible and 
represents a high-resolution snapshot 
through the subject. The fetus is, how-
ever, likely to move during the time 
required to acquire all slices. This 
means that, while the slices are all par-
allel relative to the scanner, they are no 
longer parallel relative to the fetal anat-
omy. After acquisition, it is possible to 
use an iterative registration and recon-
struction scheme to correct for the mis-
match in geometry among all the slices 
and to estimate a 3-D volumetric recon-
struction of the fetal subject’s anatomy 
(see Figure 4). 

If the head is the focus of the scan, it 
can be assumed that all the slices are 
related to the “true” underlying volume 
by a rigid alignment. The task is to esti-
mate the transformation parameters for 
each slice. Once estimated, the relative 
orientations of the slices are known and 
it is possible to reconstruct the original 
signal in three dimensions using a scat-
tered data interpolation approach. In 
practice, the two main steps (slice 
parameter estimation and volume recon-
struction) are carried out in an iterative 
and interleaved fashion. It is also possible 
to adopt a multiresolution coarse-to-fine 
approach where the early iterations esti-
mate the anatomy at lower spatial fre-
quencies and more detail is recovered as 
the iterations proceed. 

SUMMARY AND OUTLOOK
As we have illustrated in this article, the 
nonrigid registration of medical images 
is a versatile tool that is widely used, 
both in clinical applications (e.g., motion 
correction and image fusion) as well as a 
tool for biomedical research (e.g., to 
study populations or disease progression 
in clinical trials). In contrast to rigid 
registration, the development of nonrig-
id registration techniques is very much 
an area of ongoing research, and most 

Prepared Segmentations

Atlas Anatomies

Transformation

Combination

Target
Anatomy

Target
Labels

Registration

[FIG3] An example of multiatlas segmentation of brain MR images.

Corrupted Slice Data Reconstructed  Volume

Slice Parameter Estimation

Time

θx, θy, θz
tx, t y, t z

(a) (b)

[FIG4] Registration for the correction of motion artifacts: (a) successively acquired 
slices of a moving subject are geometrically inconsistent. (b) Registration is used to 
estimate the motion parameters of each slice and reconstruct a consistent volume.
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algorithms are still in the early stages of 
evaluation and validation. The speed of 
nonrigid registration algorithms is one 
drawback of most algorithms, making 
their clinical use difficult. However, 
recent advances in GPU technology have 
the potential to significantly accelerate 
nonrigid registration and offer the possi-
bility of near real-time registration. 
However, another drawback is the lack 
of a generic gold standard for assessing 
and evaluating the success of nonrigid 
registration algorithms. Future develop-
ments in this area will need to address 
both issues. 
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[SP]

whether we should be making changes 
to embrace them. 

Consider first research collaboration. 
Many of us are involved in long-distance 
collaborations, taking advantage of inex-
pensive online communication tools such 
as Skype. Usually these collaborations 
start “offline” and our expectation is for 
online tools to help us maintain them. 
Maybe we should be looking beyond mere 
communication and start thinking about 
tools that will allow us to create, write, 
and experiment in a distributed and col-
laborative manner. Perhaps we should 
even be thinking about how online social 
networks may help us identify collabora-
tors and define new problems. We are 
already able to edit papers jointly, and of 
course open source code is an example of 
collaborative development. The relevant 
core tools for shared editing [such as 
Concurrent Versioning System (CVS)] are 
well established and widely used. But this 
could be extended to broader areas: for 
example, our data sets could be more 
readily shared and, beyond that, even our 
experimental settings could be open to all 
(see, for example, www.myexperiment.

org). I look forward to sharing not only 
the final output of our work (our publica-
tions), but also the tools, data sets, and 
experiments that we include in our 
results. The recent Netflix competition 
may be an example of what is becoming 
possible: teams were able to compare 
results quickly, with the same data set, 
they could combine forces to improve 
their overall score, and the end result 
might have been better than what a single 
group working in isolation could have 
achieved given the same amount of time.

Recommendations are equally impor-
tant and promising. Consider the publica-
tion process. The reviews play a quality 
control role, but once a paper is pub-
lished, or even easier once it appears 
online (say, on Arxiv), then what? So 
many papers, so little time. Even in new 
and niche areas, it soon becomes impos-
sible to keep up with all the work. And, 
whether we like to admit it or not, we 
already rely on recommendations (from 
colleagues and students, citations by oth-
ers, and blogs) or on reputation (if an 
author’s previous work was good, we have 
an incentive to read what they have been 

up to recently). Why not take this a step 
further? Let readers rate the papers after 
they appear, let them comment, critique, 
and make it easier for everybody to find 
the really important work. Whether you 
believe in crowd wisdom (average ratings 
for a paper) or trust established reviewers 
(followed on Twitter), there should be 
ways to improve how we find interesting 
work and move our research forward.

All these changes may not alter signifi-
cantly the scientific method or how we 
convey new knowledge: don’t expect many 
new results to be summarized in a tweet. 
On the other hand, journals as we know 
them, with their monthly compilations of 
unrelated work (that just happened to be 
accepted around the same time), may well 
become obsolete sooner than we think. 
Wherever new results are published, the 
authors may have to get used to sharing 
credit with those who help everybody else 
identify the importance of their work. [SP]

[from the EDITOR] continued from page 2

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

___

___

______________

______________

__

mailto:D.Rueckert@imperial.ac.uk
mailto:Paul.Aljabar@imperial.ac.uk
http://www.myexperiment.org
http://www.myexperiment.org
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [120]   JULY 2010 1053-5888/10/$26.00©2010IEEE

Zhi Shen 
[dsp TIPS&TRICKS]

T
here is a method for increas-
ing the precision of fixed-
point coefficients used in 
linear-phase finite impulse 
response (FIR) filters to 

achieve improved filter performance. 
The improved performance is accom-
plished without increasing either the 
number of coefficients or coefficient bit-
widths. At first thought, such a process 
does not seem possible, but this article 
shows exactly how this novel filtering 
process works.

TRADITIONAL FIR FILTERING
To describe our method of increasing 
FIR filter coefficient precision, let’s first 
recall a few characteristics of tradition-
al linear-phase tapped-delay line FIR 
filter operation.

Consider an FIR filter whose impulse 
response is shown in Figure 1(a). For 
computational efficiency reasons (re-
duced number of multipliers), we imple-
ment such filters using the folded 
tapped-delay line structure shown in 
Figure 1(c) [1].

The filter’s bk floating-point coeffi-
cients are listed in the second column of 
Figure 1(b). When quantized to an 8-b 
two’s-complement format, those coeffi-
cients are the decimal integers and binary 

values shown in the third and fourth col-
umns, respectively, in Figure 1(b).

Compared to b4, the other coeffi-
cients are smaller, especially the outer 
coefficients such as b0 and b8. Because 
of the fixed bitwidth quantization, many 
high-order bits of the low-amplitude 
coefficients, the red-font underscored 
bits in the fourth column of Figure 1(b), 
are the same as the sign bit. These bits 
are wasted because they have no effec-
tive (no weight) in the calculations. If 
we can remove those wasted bits (con-
secutive bits adjacent to, and equal to, 
the sign bit), and replace them with 
more significant coefficient bits, we will 
obtain improved numerical precision 
for the low-amplitude beginning and 
ending coefficients.

Replacing a low-amplitude coeffi-
cient’s wasted bits with more significant 
bits is the central point of our FIR filter-
ing trick—of course some filter architec-
ture modification is needed as we shall 
see. So let’s have a look at a generic 
example of what we call a “serial” imple-
mentation of our trick.

SERIAL IMPLEMENTATION
As a simple example of replacing wasted 
bits, we list the Figure 1(b) bk coeffi-
cients as the floating-point numbers in 
the upper left side of Figure 2. Assume 
we quantize the maximum-amplitude 
coefficient, b4, to 8 b. In this FIR filter 
trick we quantize the lower-amplitude 
coefficients to larger bitwidths than the 
maximum coefficient (b4) as shown on 

“DSP Tips and Tricks” introduces 
practical design and implementation 
signal processing algorithms that 
you may wish to incorporate into 
your designs. We welcome readers 
to submit their contributions. 
Contact Associate Editors Rick Lyons 
(R.Lyons@ieee.org) or C. Britton 
Rorabaugh (dspboss@aol.com). 
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[FIG1] Generic linear-phase FIR filter: (a) impulse response, (b) coefficients, and 
(c) structure.
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the upper right side of Figure 2. (The 
algorithm used to determine those vari-
able bitwidths is discussed later in this 
article.) Next, we eliminate the appro-
priate wasted bits, the red-font under-
scored bits in the lower left side of 
Figure 2, to arrive at our final 8-b coef-
ficients shown on the lower right side 
of Figure 2.

Appended to each coefficient is a flag 
bit that indicates whether that coefficient 
used one more quantization bit than the 
previous, next larger, coefficient.

Now, you may say: “Stop! You can’t 
do this. The outer coefficients are left 
shifted, so they are enlarged, and the 
product accumulations are changed. 
Using these modified coefficients, the fil-
ter results will be wrong!” Don’t worry, 
we correct the filter results by modifying 
the way we accumulate products. Let’s 
see how. 

The coefficients and flag bits from 
Figure 2 are used in the serial imple-
mentation shown in Figure 3. The data 
registers in Figure 3 represent the folded 
delay-line elements in Figure 1(c). This 
implementation is called “serial” because 
there is only one multiplier and, when a 
new x 1n 2  input sample is to be pro-
cessed, we perform a series of multiplica-
tions and accumulations (using multiple 
clock cycles) to produce a single y 1n 2  fil-
ter output sample. 

For an N-tap FIR filter, where N  is 
odd, due to our folded delay-line struc-
ture only 1N1 1 2 /2 coefficients are 
stored in the coefficient read-only 
memory (ROM). (When N  is even, N/2 
coefficients are stored.) Crucial to this 
FIR filter trick is that when pro-
cessing a new x 1n 2  input sample, 
the largest coefficient, b4, is applied 
to the multiplier prior to the first 
accumulation. Following that is 
the next smaller coefficient, b3, and 
so on. In other words, in this serial 
implementation the coefficient 
sequence applied to the multiplier, 
for each x 1n 2  input sample, is in 
the order of the largest to the 
smallest coefficient. 

Given these properties, when a 
new x 1n 2  sample is to be processed 
we clear the current accumulator 

value and multiply the sum of the appro-
priate data registers by the b4 coefficient. 
That product is then added to the accu-
mulator. On the next clock cycle we 

multiply the sum of the appropriate data 
registers by the b3 coefficient. If the flag 
bit of the b3 coefficient is one, we left 
shift the current accumulator value and 
then the current multiplier’s output is 
added to the shifted accumulator value. 

(If the current coefficient’s flag bit is 
zero the accumulator word is not shifted 
prior to an addition.) We continue these 
multiplications, possible left shifts, and 
accumulations for the remaining b2, b1,
and b0 coefficients.

The left shifting of an accumulator 
value is the key to this entire FIR filter 
trick. To minimize truncation errors due 
to right shifting a multiplier output 
word, we preserve precision by left shift-
ing the previous accumulator word.

To maintain our original FIR filter’s 
gain, after the final accumulation we 
truncate the final accumulator value by 
discarding its least significant M bits, 
where M is the total number of flag bits 

Delete Wasted
(Underscored)

Bits
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Coefficients

Quantize
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Various
Bit Widths

8-b Quantization

b0
b1
b2
b3
b4
b5
b6
b7
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0.01751  (2)
–0.05899 (–8)
–0.26156 (–33)
0.37687 (48)
0.87968 (113)
0.37687 (48)

–0.26156 (–33)
–0.05899 (–8)
0.01751 (2)

00000010.010 11 b (2.25)
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00110000.0 9 b (48)
01110001. 8 b (113)
00110000.0 9 b (48)
11011110.1 9 b (–33.5)
11111000.10 10 b (–7.5)
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00000010010
1111100010
110111101
001100000
01110001
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00010010 (18) Flag = 1
11100010 (–30) Flag = 1
10111101 (–67) Flag = 0
01100000 (96) Flag = 1
01110001 (113) Flag = 0
01100000 (96) Flag = 1
10111101 (–67) Flag = 0
11100010 (–30) Flag = 1
00010010 (18) Flag = 1

Implied Binary Point

[FIG2] Filter coefficients for serial implementation.

Mux

Coefficients
ROM

(b4, b3, b2, b1, b0)

Data
Registers

Data
Registers

Mux

Left Shift
1 b

Accumulator

Mux

...

x(n)

y(n)8

...

Truncate
Least

Significant
M Bits

Flag1

[FIG3] Serial implementation with 8-b coefficients.

THE LEFT SHIFTING OF AN 
ACCUMULATOR VALUE IS 

THE KEY TO THIS ENTIRE FIR 
FILTER TRICK.
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[dsp TIPS&TRICKS] continued

in the ROM memory, to produce a y 1n 2
output sample. Now let’s have a look at 
an actual FIR filter example.

SERIAL METHOD EXAMPLE
Suppose we want to implement a low-
pass filter whose cutoff frequency is 
0.167fs and whose stopband begins at 

0.292fs, where fs is the input data sample 
rate. If the filter has 29 taps (coeffi-
cients), and is implemented with float-
ing-point coefficients, its frequency 
magnitude response will be that shown 
by the solid curve in Figure 4(a). 
Anticipating a hardware implementation 
using an Altera field-programmable gate 

array (FPGA) having 9-b multipliers, 
when using coefficients that have been 
quantized to 9-b lengths in a traditional 
manner (with no wasted coefficient bits 
removed), the filter’s frequency magni-
tude response is the dotted curve in 
Figure 4(a). 

When we use our FIR filter trick’s 
serial  implementation,  with its 
enhanced-precision 9-b coefficients (not 
counting the flag bit) obtained in the 
manner shown in Figure 2, the filter’s 
frequency magnitude response is the 
dashed curve in Figure 4(a). We see in 
the figure that, relative to the traditional 
fixed point implementation, the serial 
method provides: 

improved stopband attenuation ■

reduced transition region width ■

improved passband ripple perfor- ■

mance.
All of these improvements occur 

without increasing the bitwidths of our 
filter’s multiplier or coefficients, nor the 
number of coefficients. Because it pre-
serves the impulse response symmetry of 
the original floating-point filter, the 
serial implementation filter exhibits 
phase linearity [2].

It is possible to improve upon the 
stopband attenuation of our compressed-
coefficient serial method FIR filter. We 
do so by implementing what we call the 
“parallel method.” 

PARALLEL IMPLEMENTATION
In the above serial method of filter-
ing, adjacent filter coefficients were 
quantized to a precision differing by 
no more that one bit. That’s because 
we use a single flag bit to control the 
1-b shifting of the accumulator word 
prior to a single accumulation. In the 
parallel method, described now, adja-
cent coefficients can be quantized to a 
precision differing by more than 1 b. 
Figure 5 shows an example of our 
parallel method’s coefficient quanti-
zation process.

Again we list the Figure 1(b) bk

coefficients as the floating-point num-
bers in the upper left side of Figure 5. 
In this parallel method, however, 
notice that the expanded quantized b1

and b2 words differ by more than one 
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9-b Serial Method

9-b Traditional Fixed Point
9-b Serial Method

[FIG4] Low-pass serial method filter frequency responses: (a) full frequency range 
and (b) passband detail.
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[FIG5] Filter coefficients for parallel implementation.
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bit in the upper right side of Figure 5. 
Coefficients b2 and b6 are quantized to 
9 b while the b1 and b7 coefficients are 
quantized to 12 b. While we only 
deleted some of the wasted coefficient 
bits in Figure 2, in our parallel method 
all the wasted coefficient bits are 
deleted. As such, our final 8-b coeffi-
cients are those listed in the lower 
right side of Figure 5.

We are all familiar with the operation 
known as bit extension—the process of 
extending the bit length of a binary word 
without changing its value or sign. With 
that process in mind, we can refer to our 
trick’s operation of removing wasted bits 
as “bit compression.”

Because no flag bits are used in the 
parallel method, this filtering method is 
easiest to implement using FPGAs with 
their flexible multidata bus routing 
capabilities.

For example, consider the filter 
structure shown in Figure 6(a) where 
we perform the three multiplications in 
parallel (in a single clock cycle) and that 
is why we use the phrase “parallel 
method.” Instead of shifting the accu-
mulator word to the left as we did in the 
serial method, here we merely reroute 
the multiplier outputs to the appropri-
ate bit positions as they are added to the 
accumulator word as shown in Figure 
6(b). In our hypothetical Figure 6 exam-
ple, if there were four wasted bits 
deleted from the high-precision b1 coef-
ficient then the Vk product is shifted to 
the right by four bits, relative to the Wk

product bits, before being added to the 
accumulator word. If there were seven 
wasted bits deleted from the high-preci-
sion b0 coefficient, then the Uk product 
is shifted to the right by 7 b, relative to 
the Wk product bits, before being added 
to the accumulator word.

PARALLEL METHOD EXAMPLE
With the solid curve, Figure 7 shows our 
parallel method’s performance in imple-
menting the desired low-pass filter used 
in the above serial method implementa-
tion example. For comparison, we have 
also included the 9-b traditional fixed 
point (no bit compression) and the serial 
method magnitude responses in Figure 7.

The enhanced precisions of the 
parallel method’s quantized coefficients, 
beyond their serial method precisions, 
yield improved filter performance. The 
parallel method of our FIR filter trick 

achieves a stopband attenuation 
improvement of 21 dB beyond the 
traditional fixed-point implementation—
again, without increasing the bitwidths 

of our filter’s multipliers or coefficients, 
nor the number of coefficients.

COMPUTING 
COEFFICIENT BITWIDTHS
Determining the bitwidths of the quan-
tized filter coefficients in our DSP trick 
depends on whether you are imple-
menting the serial or the parallel filter-
ing method.

SERIAL METHOD 
COEFFICIENT QUANTIZATION
In the serial method, let’s assume we 
want our ROM to store coefficients 
whose bitwidths are integer B  (not 
counting the flag bit). 

Freq × fs
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–80
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[FIG7] Traditional fixed-point, serial method, and parallel method filter 
frequency responses.
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[FIG6] Parallel method implementation: (a) filter structure; (b) accumulator 
organization.

IT IS POSSIBLE TO IMPROVE 
UPON THE STOPBAND 
ATTENUATION OF OUR 

COMPRESSED-COEFFICIENT
SERIAL METHOD FIR FILTER.
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[dsp TIPS&TRICKS] continued

The steps in computing the integer 
ROM coefficients for the serial method 
are as follows:

Step 1 ■ : Set a temporary scale factor 
variable to SCALE5 1 and temporary 
b i twidth integer  var iable  to 
K 5 B2 1. Apply the following 
quantization steps to the largest-
magnitude original bk floating-point 
coefficient (for example, b4 in the 
upper left side of Figure 2).

Step 2 ■ : If the bk  floating-point 
coefficient being quantized and all 
the remaining unquantized coeffi-
cients are less than the value 
SCALE/2, set SCALE 5 SCALE/2, 
set K5K1 1, and set the current 
 coefficient’s flag bit to Flag 5 1. If 
the bk floating-point coefficient 
being quantized or any of the 
remaining unquantized coeffi-
cients are equal to or greater than 
SCALE/2, variables SCALE and K
remain unchanged, and set the 
current  coef f ic ient ’s  f lag  b i t 
to Flag 5 0. 

Step 3 ■ : Multiply the bk floating-
point coefficient being quantized by 
2K  and round the result to the nearest 
integer. That integer is our final value 
saved in ROM. 

Step 4 ■ : Repeat Steps 2 and 3 for 
all the remaining original unquan-
tized bk floating-point coefficients, 
in sequence from the remaining 
largest-magnitude to the remaining 
smallest-magnitude coefficient.
Table 1 illustrates the serial method 

quantization steps for the floating-point 
coefficients in Figure 2.

PARALLEL METHOD 
COEFFICIENT QUANTIZATION
In the parallel method, let’s assume we 
want our ROM to store coefficients 
whose bitwidths are integer B. (For 
example, in the lower right side of 
Figure 5, B 5 8.) Next, let’s define an 
optimum magnitude range, R, as

 0.5 # R , 1. (1) 

The steps in computing the integer 
ROM coefficients for the parallel method 
are as follows:

Step 1 ■ : Repeatedly multiply an 
original bk floating-point coefficient 
(the upper left side of Figure 5) by 
two until the magnitude of the 
result resides in the optimum mag-
nitude range R. Denote the number 
of necessary multiply-by-two opera-
tions as Q.

Step 2 ■ : Multiply the original bk

floating-point coefficient by 2B1Q21

(the minus one in the exponent 
accounts for the final coefficient’s sign 
bit) and round the result to the near-
est integer. That integer is our final 
value saved in ROM. 

Step 3 ■ : Repeat Steps 1 and 2 for all 
the remaining original bk floating-
point coefficients.

CONCLUSIONS
We introduced two novel methods for 
improving the precision of the fixed-
point coefficients of FIR filters. Using 
the modified (compressed) coefficients, 
we achieved enhanced filter perfor-
mance while maintaining phase linear-
ity, without increasing the bitwidths of 
our filter multiplier or co efficients, 
nor the number of coefficients. The 
 so-called serial method of filtering 
is compatible with traditional pro-
grammable DSP chip and FPGA 
process  ing, while the parallel method 
is most appropriate with an FPGA 
 implementation.
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[TABLE 1] SERIAL METHOD QUANTIZATION EXAMPLE.
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SCALE

ALL UNQUANTIZED 
COEFFICIENTS LESS 
THAN SCALE/2? NEW SCALE K

ROM EQUIVALENT 
COEFFICIENT 
BITWIDTH FLAG BIT

LEFT SHIFT 
AND ROUND

b45 0.87968 1 NO0b4 0 . 1/2 1 7 8 0 B4 5  ROUND 3b4 3 27 4 5 113 

b35 0.37687 1 YES0b3 0 , 0b2 0 , 0b1 0 , 0b0 0 , 1/2 0.5 8 9 1 B3 5  ROUND 3b3 3 28 4 5 96

b2520.26156 0.5 NO0b2 0 . 0.5/2 0.5 8 9 0 B2 5  ROUND 3b2 3 28 4 5267

b1520.05899 0.5 YES0b1 0 , 0b0 0 ,  0.5/2 0.25 9 10 1 B1 5  ROUND 3b1 3 29 4 5230

b05 0.01751 0.25 YES0b0 0 ,  0.25/2
0.125 10 11 1 B0 5  ROUND 3b0 3 210 4 5 18

THE SO-CALLED SERIAL 
METHOD OF FILTERING 

IS COMPATIBLE 
WITH TRADITIONAL 

PROGRAMMABLE DSP CHIP 
AND FPGA PROCESSING.
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Compression of Medical Sensor Data

O
ver the course of the last 
20 years, compression has 
evolved from a somewhat 
esoteric domain of mathe-
matics and computer sci-

ence into a ubiquitous consumer 
electronics technology. Combined with 
steadily decreasing complementary metal–
oxide–semiconductor (CMOS) silicon costs 
and increasing broadband Internet avail-
ability, compression algorithms for audio 
and video signals, such as Joint 
Photographer’s Expert Group (JPEG), 
Moving Pictures Expert Group (MPEG), 
MPEG audio layer III (MP3), advanced 
audio coding (AAC), and H.264, have 
enabled the development of new consumer 
product categories such as digital cameras, 
digital audio players, digital versatile disc 
(DVD) players, high-definition television, 
and Internet videoconferencing. Without 
the 4x–32x decrease in effective bit rates 
that compression (and Moore’s law) 
unlocked, these popular products would 
not be cost-effective and thus would not 
have reached consumer electronics pene-
tration levels.

Given the prevalence and success of 
speech, audio, image, and video com-
pression algorithms in consumer elec-
tronics, it is surprising that many 
high-speed digital signal processing 
(DSP) systems such as wireless infra-
structure, radar processing, and medical 
imaging sensor subsystems have until 
recently not considered compression as 
an alternative for reducing data acquisi-
tion bandwidth and storage bottlenecks. 
In consumer electronics products, com-
pression is typically used as a source 
coding solution to reduce the bit rate of 
a single media stream, before com-
pressed audio and video packets enter 

the transport and storage infrastruc-
ture. In contrast, this article describes 
sensor compression for medical trans-
ducers that is an integral part of the 
high-speed DSP transport and storage 
infrastructure itself, and compressing 
and decompressing hundreds or thou-
sands of sensor channels in real time. 
While we certainly acknowledge the 
benefits of compressing medical images 
that are output from image reconstruc-
tion, our goal is to describe the benefits 
of compressing medical sensor data 
before image reconstruction. When 
combined with low-cost, off-the-shelf 
computer and networking components, 
sensor compression reduces the costs of 
the medical imaging data acquisition, 
transport, and storage infrastructure. 
By reducing medical imaging equip-
ment bill of material (BOM) costs, inte-
grated medical sensor compression and 
decompression will ultimately reduce 
the cost of medical care. 

SENSOR COMPRESSION, 
NOT IMAGE COMPRESSION
If sampled data compression has worked 
so well for speech, audio, image, and 
video, why haven’t medical imaging 
engineers used compression before? In 
fact, medical image compression is see-
ing broad deployment in picture ar -
chiving and communication systems [1] 
that hospitals and doctors’ offices use to 
manage the flood of medical images 
from all modalities. Com  pressing medi-
cal images after they are reconstructed 
has obvious benefits when the images 
must be transported to geographically 
distant doctors or when they are 
archived. Image compression algo-
rithms such as JPEG2000 and JPEG-LS 
work well on the images that are output 
from image reconstruction. In contrast, 

this article describes the benefits of 
compression of sensor data that is the 
input to image reconstruction. Com -
pression of medical sensor samples 
reduces medical imaging infrastructure 
transport and storage costs prior to 
image reconstruction.

There are several reasons why com-
pression of medical sensor data prior to 
image reconstruction has not been 
deployed in medical imaging scanners. 
Medical sensor signals differ from audi-
ble and visual signals in three key 
aspects. First, medical imaging sensors 
generate hundreds or thousands of sen-
sor streams, while audio and video 
 signals are limited to at most six sur-
round-sound channels or a few inter-
leaved video streams. Because the 
typical number of sensor streams to be 
compressed is two or three orders of 
magnitude higher than the typical num-
ber of audio and video streams, the 
input–output (I/O) and processing 
architecture of medical sensor compres-
sion algorithms will differ substantially 
from the I/O and processing architec-
ture of audio and video compressors. 
Second, the bandwidth and dynamic 
range requirements of medical sensors 
vary widely, from 10 ksamp/s at 20 b/
sample for  computed tomography (CT), 
to 100 Msamp/s at 16 b/sample for mag-
netic resonance imaging (MRI). In con-
trast, audio compression rates are 
determined by human hearing’s 
unchanging 20 kHz bandwidth and 130 
dB dynamic range, so audio decompres-
sion need not generate signals faster 
than 40 ksamp/s, or with more than 24 
b/sample, or more than two channels 
(stereo). Third, the ultimate consumer 
of decompressed audio and video is a 
human with predictably limited hearing 
and vision, while the ultimate consumer 
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of decompressed medical sensor data is 
an ultrasound beamforming algorithm 
or a CT image reconstruction kernel. 
While the degradations introduced by 
audio and video compression algorithms 
are unnoticeable by humans, medical 
image reconstruction algorithms 
require the full bandwidth and dynamic 
range of the sensor data. Image recon-
struction algorithms may generate 
unpredictable and unwanted artifacts if 
their input sensor data were subjected 
to compression techniques that were 
developed for human hearing or vision. 
To summarize, medical image compres-
sion algorithms support channel counts, 
sample rates, bit widths, and compres-
sion algorithms that differ fundamen-
tally from those used by consumer 
audio and video systems.

MEDICAL SENSOR DATA RATES 
ARE RISING EXPONENTIALLY
All medical imaging modalities face the 
challenge of exponentially rising sensor 
data rates. As shown in Table 1, sensors in 
next-generation CT, ultrasound, MRI, and 
digital X-ray systems will generate from 
4 Gb/s to 200 Gb/s of sampled data. 
Medical sensor data rates rise for three 
reasons. First, the number of sensor chan-
nels is increasing, allowing larger areas of 
anatomy to be scanned more quickly. 
Today’s high-end CT scanners already con-
tain over 300,000 X-ray scintillators, pho-
todiodes, and analog-to-digital converters 
(ADCs), and that number typically doubles 
every three years. Second, sample rates 

per sensor channel are increasing. In 
medical ultrasound, yesterday’s 3 MHz 
piezoelectric transducers are evolving to 
18 MHz center frequencies, and the sam-
ple rates will rise proportionally [2]. Third, 
the dynamic range of medical imaging 
sensors is increasing. For instance, yester-
day’s 12-b ADCs for MRI are being 
replaced with 16-b ADCs because the 
wider sensor dynamic range improves 
MRI images. The combination of increas-
ing channel counts, sample rates, and bit 
widths is the reason that medical imaging 
manufacturers are evaluating compres-
sion of medical sensor data to reduce 
bandwidth and storage costs.

Transporting and storing medical sen-
sor samples can become expensive. As 
shown in Table 1, medical sensors gener-
ate Gb/s of data that must be transported, 

processed, stored, and displayed. Medical 
imaging scanners are often assembled 
from standardized, low-cost computer 
and networking components wherever 
possible because doing so lowers the cost 
of the scanners. Despite the low cost of 
these individual components, a next-gen-
eration CT scanner’s sensor subsystem 
will generate 80 Gb/s of sensor data that 
must be delivered to the scanner’s image 

reconstruction subsystem. CT scanners 
could use commercial gigabit Ethernet 
(GbE) links to transport the sensor data 
from gantry to image reconstruction, but 
this solution would require 80 or more 
GbE cables and 80 router ports on both 
ends of the link. Using 4:1 compression of 
the CT sensor data allows 20 GbE links to 
carry the same amount of data, reducing 
link costs by 75%. As illustrated in Figure 
1, next-generation ultrasound machines 
will use two-dimensional (2-D) transduc-
ers that ultimately create a four-dimen-
sional (4-D) image (a 3-D volume 
changing over time). To improve manu-
facturing yield, 2-D ultrasound transduc-
ers may use capacitive micro-machined 
ultrasound transducers (CMUTs) to 
replace piezoelectric crystals. Each of the 
2,000 transducers in a 2-D probe must be 
sampled at 201 Msamp/s with 10–12 b/
sample, generating 200 Gb/s of sensor 
data that must be delivered to a beam-
former and a scan converter (ultrasound’s 
image reconstruction steps). Using 3:1 
compression in the 2-D probe would 
reduce sensor and field-programmable 
gate array (FPGA) pin counts, power con-
sumption, printed circuit board (PCB) 
complexity, and cabling costs by two-
thirds. In summary, introducing compres-
sion into medical sensor transport and 
storage infrastructure reduces intercon-
nect and storage costs by a factor of two 
to four, even when medical imaging scan-
ners are already assembled using low-cost 
computer and networking components.

EXAMPLE: BENEFITS OF SENSOR 
COMPRESSION FOR CT
If medical imaging companies are to use 
compression, the benefits of doing so 

3-D Image

Probe

Integrated Circuit
CMUT Array

External
Processing

Unit

[FIG1] Compression reduces 4-D 
ultrasound bandwidth requirements 
(from [9]). (Figure used with 
permission.)

[TABLE 1] BANDWIDTH REQUIREMENTS FOR CT, ULTRASOUND, MRI, 
AND DIGITAL X-RAY SYSTEMS.

SENSOR 
SIGNAL TYPE 

NEXT-GENERATION 
SENSOR 
BANDWIDTH

TYPICAL LOSSLESS*  
COMPRESSION 
RATIOS 

FIXED-RATE* COMPRESSION 
RATIOS GENERATING 
CLINICALLY ACCEPTABLE 
IMAGES 

COMPUTED
TOMOGRAPHY

~80 Gb/s 2:1 #5:1

ULTRASOUND 
(RF SIGNAL)

~200 Gb/s 1:85:1 #3:1

ULTRASOUND 
(BEAMFORMED
SIGNAL)

~20 Gb/s 2:1 #4:1

MAGNETIC
RESONANCE
IMAGING

~5 Gb/s 4:1 #6:1

DIGITAL X-RAY ~4 Gb/s 1:8:1 #3:1
*The listed compression ratios were obtained using Samplify’s Prism 3 compression on ultrasound, MR, and digital X-ray 
signals, and Prism CT compression for CT signals.

ALL MEDICAL IMAGING 
MODALITIES FACE 

THE CHALLENGE OF 
EXPONENTIALLY RISING 
SENSOR DATA RATES.
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must be more cost-effective than just 
buying more bandwidth and storage. Let’s 
consider a specific example: what would 
happen to the bill of materials (BOM) cost 
of a CT scanner if 3:1 compression could 
be achieved on CT sensor samples, instead 
of purchasing two to four times more CT 
bandwidth and storage? Figure 2 shows 
the block diagram of a CT scanner, which 
includes two primary functional compo-
nents. The first component, a gantry, con-
sists of a rotating platform that transmits 
rotating X-ray beams though a patient 
who lies on a table that moves thru the 
center of the gantry. The second compo-
nent, a  console, receives the digitized 
X-ray measurements and converts them 
into CT images using image reconstruc-
tion software. The gantry contains a data 
acquisition subsystem (DAS) with three 
types of elements that are replicated up to 
300,000 times: scintillators that convert 
X-rays to light, photodiodes that convert 
light to current, and ADCs that convert 
current to digital samples. The gantry 
also contains a rotating, noncontacting 
electromechanical device called a slip 
ring, which transfers power from stator 
to rotor and sends digitized X-ray samples 
from the DAS on the rotor to the stator. 
The CT console contains a high-speed 
storage system [typically a redundant 
array of inexpensive disks, (RAID)], an 
image reconstruction compute fabric 
such as a multicore central processing 
unit (CPU), FPGA farm, or multiple 
graphics processing units (GPUs), and a 
display subsystem. CT sensor compres-
sion of 3:1 reduces slip ring costs by at 
least half. By reducing the slip ring bit 
rate by a factor of three, CT sensor com-
pression also reduces console costs

by decreasing the number of RAID  ■

arrays required to capture DAS samples 
in real time. 

by lowering the number of servers  ■

and RAID controllers associated with 
the RAID arrays. 

by reducing the physical size and  ■

power consumption of the console.
With a  typical  BOM cost  of 

US$500,000 for a high-end CT scanner, 
sensor compression can reduce gantry 
costs by US$5,000 or more and console 
costs by US$25,000 or more. Even when 

accounting for compression’s implemen-
tation costs, CT scanner BOM savings 
between 5–25% are the primary factor 
motivating CT scanner companies to 
evaluate sensor compression.

CHARACTERISTICS OF 
A REAL-TIME SENSOR 
COMPRESSION ALGORITHM
Given the wide variety of signals that med-
ical imaging sensors generate, could one 
compression algorithm effectively com-
press all of them? Interestingly, medical 
sensor signals share three common char-
acteristics: 1) they are usually slightly to 
moderately oversampled, 2) they have 
moderate to high peak-to-average ratios 
(PAR), and 3) they are sampled by imper-
fect ADCs. These characteristics are dis-
cussed in detail next. 

The oversampling ratio is calculated by 
dividing the per-sensor sample rate by the 
sensor signal’s effective bandwidth. The 
higher the oversampling ratio, the larger 
the sample-to-sample correlations and the 
smoother the signal waveforms will 
appear. Reducing sample-to-sample redun-

dancy (a primary goal of compression) is 
relatively easy when medical sensor sam-
ples are moderately oversampled. 
Oversampling regularly occurs in DSP 
systems because sharp analog anti-alias 
filters prior to data conversion are more 
expensive than equivalent-rolloff filters in 
the digital domain.

PAR is defined as the maximum signal 
value divided by the mean signal value 
across an ensemble of signal samples 
(such as one patient scan), and expressed 
in decibels (dB). Because ultrasound sig-
nals are pulsed, we expect them to have a 
relatively high PAR of 8–10 dB. Ultrasound 
signals require their largest-magnitude 
samples for a very short time, typically at 
the start of a pulse. Because the amplitude 
of a received ultrasound signal quickly 
attenuates as it is reflected by various lay-
ers of blood, tissue, and bone, the mean 
ultrasound signal level is always 8–10 dB 
lower than its peak signal level. 
Surprisingly, CT and MRI sensor signals 
also exhibit PAR levels above 6 dB. Because 
PAR levels above 6 dB are common for 
many medical sensor signals, a compres-
sion algorithm employing a varying num-
ber of bits to encode signal amplitude 
provides a simple yet surprisingly effective 
compression technique.

Medical imaging equipment requires 
hundreds or thousands of ADCs to acquire 
sensor signals. ADCs and digital-to-analog 
converters (DACs) are characterized by 

Drive
Unit

High-Voltage Supply

X-Ray Source

Gantry

Patient Bed

Radiation Receiver
Computer

Monitor7

8 Decompression
in Image Recon (IR)

SubsystemCompression
in Rotor (DAS)

SRS
Rotary

14

15

9

11 1

6

2

10

4
2

5

3

Patient

SRS
Stationary

[FIG2] Compression reduces CT slip ring and storage array costs. 

LOSSLESS COMPRESSION 
OF MEDICAL SENSOR DATA 

BECOMES ATTRACTIVE 
WHEN SENSOR SIGNAL 

COMPRESSION CAN HALVE 
THE SENSOR DATA RATE.
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two primary parameters: resolution (nom-
inal number of bits per sample) and effec-
tive number of bits (ENOB). While 
resolution defines the numerical range of 
the ADC or DAC, ENOB is a measurement 
that defines the subset of the numerical 
range that contains useful information. An 
ADC with 14 b of resolution may only 
deliver 12.5 ENOB, where ENOB was mea-
sured using a full-scale sine wave. Because 
data converter ENOB values are always 
less than their resolution, some ADC and 
DAC samples are more useful (“effective”) 
than others. An algorithm that preserves 
ENOB during compression will be useful 
for medical sensor signals.

Regarding the sometimes confusing 
term “real time,” certainly a medical sen-
sor compression algorithm must operate 
fast enough to compress all samples gen-
erated by all sensor ADCs. A second aspect 
of “real time” is related to the speed of 
image reconstruction. In CT and MRI, 
image reconstruction is usually a nonreal-
time process. A CT scanner scans the 
patient in 30 s, but the CT images may 
only be available after ten minutes of 
image reconstruction. Under these cir-
cumstances, the compressed sensor data 
need only be decompressed as fast as sam-
ples are consumed by image reconstruc-
tion. A medical imaging scanner may thus 
have two “real-time” rates: a faster rate for 
sensor compression during data acquisi-
tion, and a slower rate for sensor decom-
pression during image reconstruction.

Because the ADCs that digitize medical 
imaging sensor signals are usually 
attached to FPGAs, compression of sensor 
data will first be implemented in these 
existing FPGAs. However, because medical 
imaging often involves hundreds or thou-
sands of sensor channels, compression’s 
lowest cost and power consumption will 
only be realized when compression is inte-
grated into sensor ADCs. By integrating 
compression into ADCs, the silicon area of 
compression is minimized, as are the pins, 
cables, and power used to transmit com-
pressed packets from the ADC to subse-
quent signal processing. In both FPGA and 
ADC implementations of sensor compres-
sion, the compressor must be fast enough 
to compress all ADC sensor channels as 
fast as the ADC samples arrive.

Just as the implementation of medi-
cal sensor compression depends on the 
hardware available, implementation 
choices for decompression also depend 
on the available image reconstruction 
hardware. Certainly FPGAs have ade-
quate resources for both real-time com-
pression and decompression of sensor 
samples. Medical imaging modalities 
with real-time image reconstruction 
functions such as ultrasound beam-
forming will want to decompress the 
sensor data prior to, and possibly after, 
beamforming, using the beamformer 
FPGA. In medical imaging modalities 
where image reconstruction is slower 
than sensor acquisition, decompression 
is preferably done in the same process-
ing hardware (GPU, CPU, or FPGA) as 
image reconstruction. Ref erence [3] 
describes a GPU implementation of the 
Prism CT decompression algorithm on 
an Nvidia GeForce GTX260, a 192-core 

GPU. GPUs and multicore CPUs are 
becoming the  preferred medical image 
reconstruction platforms because of 
their scalability and algorithmic flexi-
bility. For this reason, sensor decom-
pression algorithms that are available 
on GPUs and CPUs, and that use a mod-
est amount of MIPS when compared 
with image reconstruction MIPS, will 
be preferred.

LOSSLESS AND LOSSY 
COMPRESSION 
Compression algorithms offer either 
lossless or lossy operation. Computer 
users regularly use lossless compression 
for e-mail attachments and file trans-
fers. Lossless compression of medical 
images is also well known [4]. A draw-
back of lossless compression is its lower 
compression ratio when compared to 
lossy compression. Lossy compression 
is far more commonly used than loss-

less compression for audio and video. 
Lossy compression is sometimes called 
fixed-rate compression, because the 
guarantee of a fixed bit rate means that 
the decompressed samples usually differ 
from the original sensor signal samples. 
MP3 users are familiar with lossy com-
pression’s tradeoff: the higher the com-
pression ratio, the larger the loss of 
audio fidelity. By selecting lossless or 
lossy compression for a given applica-
tion, the compression user has made an 
implicit tradeoff between bit rate and 
quality. Lossless compression provides 
the best quality but achieves an unpre-
dictable (and time-varying) amount of 
compression. Users cannot ask lossless 
file compression programs to achieve a 
specific compression ratio because the 
amount of compression achieved 
depends on the input and thus cannot 
be determined beforehand. Instead, 
lossless compression programs achieve 
as much compression as is consistent 
with the constraint that the decom-
pressed data must be identical to the 
original data. 

Lossless compression of medical sen-
sor data becomes attractive when sensor 
signal compression can halve the sensor 
data rate. Halving the BOM cost is usu-
ally enough to justify a lossless sensor 
compression algorithm’s various costs. 
Table 1 demonstrates that a compres-
sion algorithm called Prism achieves 
about 2:1 lossless compression on CT, 
MR, ultrasound, and digital X-ray sen-
sor signals. In its lossy mode, Prism 
achieves between 3:1 and 6:1 compres-
sion on the same medical imaging sen-
sor samples, where the resulting images 
have acceptable diagnostic quality as 
judged by radiologists, sonographers, 
and other medical imaging profession-
als (hereafter called image quality 
experts). Higher lossy compression 
ratios create greater BOM cost savings.

Patients and doctors may at first be 
reluctant, or at least somewhat nervous, 
about using medical imaging machines 
that compress sensor data using a lossy 
algorithm. MP3 listeners may not care 
if audio compression’s distortions are 
occasionally unmasked, but it would be 
completely unacceptable if a radiologist 

HOW SHOULD THE 
MEDICAL IMAGING 

COMMUNITY JUDGE, AND 
CONSERVATIVELY SELECT, A 
LOSSY COMPRESSION RATIO 

FOR SENSOR SIGNALS?
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misdiagnosed a patient because of lossy 
sensor data compression. Lossy com-
pression of sensor signals must not 
change the diagnostic quality of recon-
structed medical images from which 
image quality experts make clinical 
diagnoses. This tradeoff between bit 
rate and signal quality raises a key ques-
tion: how should the medical imaging 
community judge, and conservatively 
select, a lossy compression ratio for 
sensor signals?

EFFECT OF LOSSY SENSOR 
COMPRESSION ON CLINICAL 
IMAGE QUALITY
Appropriately designed medical image 
viewing tests reveal, with the over-
whelming statistical strength that the 
medical imaging community requires, 
how much lossy compression can be 
applied to sensor samples before clini-
cal image quality is reduced. Multiple 
image quality experts can be enrolled 
in receiver operating characteristic 
(ROC) tests that evaluate thousands of 
image pairs, where the image pairs 
include an original image (created from 
the original, noncompressed sensor 
signals) and an alternate image (created 
from compressed sensor signals at a 
variety of lossy compression ratios). A 
study in [5] describes a viewing test 
that used 1,890 CT image pairs from a 
commercial CT scanner, where alter-
nate images were created from com-
pressed CT sensor data at compression 
ratios up to 4:1. This study concluded 
that lossy compression of CT sensor 
data did not affect the clinical image 
quality on a variety of patient and phan-
tom projection data sets, as judged both 
by a radiologist and several automated 
viewing metrics. Because such studies 
are new, we hope that our initial results 
motivate additional research into the 
effects of sensor compression on medi-
cal image quality. Since presenting the 
results of [5] the author has obtained 
additional sensor datasets (and the 
resulting images) that are ten times 
larger than those used in the original 
study. The involvement of additional 
radiologists would also be a welcome 
addition to this kind of research.

A medical sensor signal compression 
algorithm should provide a choice of 
compression ratios and then use the 
ratio that results in clinically acceptable 
images. Ideally the compression algo-
rithm would also offer a lossless mode 
for those rare cases where unaltered, yet 
bit-reduced, sensor data is required. The 
chosen lossy compression ratio will 
vary, depending on modality (e.g., MR 
sensor signals compress more easily 
than ultrasound signals), anatomy (for 
example, head scans compress more 
easily than body scans), or function (for 
instance, real-time CT imaging for 
guided surgery at 30 frames/s accept-
ably has acceptably lower resolution 
than nonreal-time image reconstruc-
tion). Results of viewing studies that 
evaluate sensor compression’s effects on 
image quality can be combined into a 
set of standardized scan protocols 
(parameter settings) that automatically 
select the appropriate compression set-
tings for the variety of medical imaging 
tasks performed by today’s scanners. 
Scan protocols ensure that patient 
images with acceptable clinical quality 
are delivered to doctors and radiologists 
for diagnosis, while patients, doctors, 
and hospitals benefit from less expen-
sive medical imaging equipment that 
compression enables.

The image and video compression 
and machine vision communities have 
developed automated image quality 
assessment software that quantifies dif-
ferences between image pairs. These 
automated tools are now being used to 
automatically assess medical image 
quality. While older metrics such as 
peak signal-to-noise ratio (PSNR) have 
been used for decades as a crude mea-
sure of digital image quality, image 
quality experts agree that PSNR is not 
well correlated with human perception 
of image quality. A relatively new image 
quality metric called structural similar-
ity (SSIM) is both easy to calculate and 
well correlated with human image per-
ception [6]. SSIM is applied to image 
pairs and measures their similarity on a 
scale from 0.0 (images are unrelated) to 
1.0 (images are identical). In the previ-
ously described CT image quality study 

[5], SSIM was applied to the 1,890 CT 
image pairs whose alternate images 
were created using compressed CT sen-
sor data. An SSIM thres hold of 0.99 
identified those images that were more 
likely to contain image artifacts that 
expert image viewers might notice. An 
SSIM threshold of 0.98 is often consid-
ered the level of visual indistinguish-
ability. In Figure 3, (a) illustrates an 
original CT image, (b) shows an 
 alternate image created from 3:1-com-
pressed sensor data, (c) the pixel-by-
pixel differences bet ween the images, 
and (d) the SSIM map. Both the pixel-
by-pixel differences and the SSIM map 
have been contrast-enhanced to the full 
grayscale range for easier perception of 
differences. An SSIM map sweeps a 
10 3 10-pixel square across all possible 
100-pixel regions of the original image 
and generates a local SSIM value for 
each region. The worst-case SSIM pixel 
of 0.995 in the SSIM map [Figure 3(d)] 
suggests that images in Figure 3(a) and 
(b) will look identical to expert viewers. 

Automated image quality metrics such 
as SSIM can be used to identify medical 
images that might contain artifacts that 
image quality experts would notice. 
Images whose quality is above a predeter-
mined SSIM threshold need not be exam-
ined by these image quality experts, 
because the image quality threshold was 
pre-calibrated using similar experts on 
many images. By using automated image 
quality metrics such as SSIM, image qual-
ity studies can include more images to 
increase confidence levels while keeping 
the study costs manageable.

SSIM is not the only automated met-
ric for image quality. A metric called 
just-noticeable distortion (JND) that 
was originally developed to evaluate 
video compression standards is equally 
useful for medical imaging [7]. Because 
JND includes more perceptual variables, 
such as ambient lighting, display char-
acteristics, and viewer distance from the 
display, JND’s image quality estimates 
may ultimately be better-correlated than 
SSIM with human observer perfor-
mance. While SSIM and JND provide 
comparable results [8], SSIM is freely 
available while JND software must be 
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licensed. SSIM is probably the preferred 
metric for automated image quality 
assessment, unless researchers already 
have access to the JND software.

FUTURE OF COMPRESSING 
MEDICAL SENSOR DATA
Compression for medical imaging sen-
sor signals provides significant BOM 
cost savings and expands bandwidth-
limited links. A compression algorithm 
that provides both user-selectable loss-
less and lossy compression modes, along 
with user-selectable compression ratios, 
can be fine-tuned to the desired rate-
distortion tradeoff for medical imaging 
modalities that include CT, ultrasound, 
MRI, and digital X-ray. Image quality 
tests that utilize both automated image 
quality metrics and expert viewers will 
guarantee that lossy compression does 
not compromise clinical image quality. 
Compression can be enabled in FPGAs 
or directly in ADCs and DACs, while 

decompression is more often imple-
mented in software on the same CPU or 
GPU platform that performs image 
reconstruction. Compression will 
become an integral part of next-genera-
tion medical imaging equipment while 
providing medical images with equiva-
lent image quality to more expensive 
medical imaging systems that do not 
utilize compression. Just as compres-
sion has become an integral part of con-
sumer electronics devices, compression 
of sensor samples is becoming an equal-
ly important function in medical imag-
ing systems. 
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[FIG3] Comparing (a)–(b) two CT images (c) using pixel differences and (d) an SSIM map.
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Human Brain Connectomics: 
Networks, Techniques, and Applications

T
he human brain is organized 
into a collection of interacting 
networks with specialized 
functions to support various 
cognitive functions. The word 

“connectome” first burst on the scene 
with the work of Sporns et al. [1], who 
urged brain researchers to advance a com-
prehensive structural description of the 
elements and connections forming the 
human brain. An increasing body of evi-
dence indicates that schizophrenia, multi-
ple sclerosis, and autism exhibit abnormal 
brain connections. Changes in connectivi-
ty also appear to occur as a consequence of 
neuron degeneration, either from natural 
aging or diseases such as Alzheimer’s dis-
ease. A connectome is hence fundamental-
ly important for understanding brain 
growth, aging, and abnormality. At the 
micro level, the brain elements consist of 
single neurons, the amount of which often 
treads the realm of hundreds of billions, 
and possible connections between them 
numbering in the order of 1015. At a more 
macro (and more manageable) level, the 
brain is parcellated into a number of 
regions, where each region accounts for 
the activity and coactivity of a population 
of neurons. The colossal task of construct-
ing a connectome calls for powerful tools 
for handling the vast amount of informa-
tion given by advanced imaging tech-
niques. In this article, we provide an 
overview of the fundamental concepts 
involved, the necessary techniques, and 
applications to date.

NEUROIMAGING TECHNIQUES
In recent years, emerging magnetic 
resonance imaging (MRI) techniques 
with growing sophistication allow 
deeper insights beyond the brain’s 

gross anatomy to probe functional 
connections. Functional MRI (fMRI), 
for example, capitalizes blood flow 
and oxygen consumption variations 
within the brain as markers for neu-
ronal activity, and highlights brain 
circuits that are activated under dif-
ferent stimulated behaviors. Resting 
state fMRI (R-fMRI), detecting fluctu-
ations in brain activity of a person at 
rest, can be employed to locate coor-
dinated networks within the brain. 
High angular resolution diffusion 
imaging (HARDI) detects water diffu-
sion along fibrous tissue and allows 
visualization of axonal bundles. The 
wealth of information provided by 
these imaging techniques furnishes 
new opportunities for in vivo investi-
gation into brain circuitry.

THE BRAIN NETWORK
The N  regions of a brain form the col-
umns (targets) and rows (sources) of an 
N 3 N  connection matrix C that may 
or may not be symmetric, depending on 
whether the connection directionality 
is important. The diagonal of the matrix 
is often zeroed since self-connectivity is 
not normally important in this context. 
The element cij of C represents connec-
tions between individual elements i and 
j. A confirmed absence of connection is 
denoted by a zero, while a confirmed 
presence of connection results in a one. 
A richer description of the connection 
is possible by adding physiological 
parameters, such as connection density, 
fiber length, and diffusion measure-
ments, as additional layers of informa-
tion. Combining these pieces of 
information then allows a structural 
description of both connection topology 
and biophysical properties. An illustra-
tion of the processes involved in con-

structing a brain network is given in 
Figure 1, with the details discussed in 
the upcoming sections.

BRAIN PARCELLATION
There are apparently a myriad of possi-
ble ways for parcellating a brain. There 
is, however, currently no single univer-
sally accepted parcellation scheme for 
human brain regions. Possibilities 
range from the commonly used modest 
90 anatomically motivated parcellations 
given by the automatic anatomical 
labeling scheme [2], to the approxi-
mately 1,000 regions of interest defined 
at the white-gray matter interface used 
in Hagmann et al.’s work [3]. However, 
the question of whether structural par-
cellation of the brain results in func-
tionally distinctive regions is largely 
unanswered. This is fundamentally 
important, since understanding brain 
function in relation to the structural 
substrate has been a major goal of neu-
roimaging. Perhaps the most promising 
approach is what termed as the connec-
tivity-based parcellation, discussed by 
Behrens et al. in [4], where, based on 
the observation that functionally dis-
tinct gray matter regions manifest dif-
ferent patterns of remote connectivity, 
the gray matter is parcellated according 
to its connectional architecture, infer-
ring boundaries between discrete func-
tional regions.

REGISTRATION AND 
PARCELLATION PROPAGATION
Large-scale comparison of medical 
images for the purpose of studying 
brain connectivity cannot yet be per-
formed without first removing con-
founding intra- or interindividual 
variations. Factors such as genetics, 
gender, pathologies, injury, and growth 
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induce  structural variations in the 
brain. Here, the importance of image 
preprocessing is therefore to align the 
population of images into a common 
space, matching spatially the struc-
tures in question. The increased speci-
ficity requirement in delineating 
connection abnormalities or growth 
related changes place increasing 
demands on registration algorithms. 
Thus, for the past two decades, we have 
seen a flourish of registration algo-
rithms that cater for a wide range of 
imaging modalities. Upon establishing 
structural correspondence between a 
population of brain images and a brain 
atlas, parcellation information from 

the altas can be propagated to the indi-
vidual images for consistent generation 
of connectivity matrices.

CONSTRUCTING THE 
CONNECTIVITY MATRIX
Different imaging modalities furnish 
complementary connectivity informa-
tion. In what follows, we will discuss 
how connectivity is defined for some 
commonly used modalities. Con-
structing the connectivity matrix 
involves 1) gathering appropriate fea-
tures from each region of interest and 
2) establishing interregion correlation 
utilizing the gathered features. Details 
are as follows.

FEATURES

FUNCTIONAL CONNECTIVITY
FMRI measures the hemodynamic 
response related to neural activity in the 
brain and can be used to examine interre-
gional correlation in neuronal variability. 
Regional functional connectivity is typical-
ly estimated using cross correlations, par-
tial correlations, or mutual information of 
regional time series at one or several spe-
cific frequencies. The default mode net-
work (DMN), for example, is characterized 
by coherent neuronal oscillations at a rate 
lower than 0.1 Hz.

STRUCTURAL CONNECTIVITY
The cerebral cortex is the outermost layer 
of neural tissue in the human cerebrum. It 
plays a key role in memory, attention, per-
ception, thought, language, and con-
sciousness. Connection networks can also 
be inferred from structural MRI data with 
brain regional connectivity estimated as 
correlations in cortical thickness [5] or 
volume [6]. After parcellating the brain 
into a number of regions, the mean corti-
cal thickness or gray-matter volume are 
normally computed for the purpose of 
estimating the interregion connectivity. 

WHITE-MATTER CONNECTIVITY
Diffusion weighted imaging (DWI) has 
gained considerable interest in the 
research community owing to its demon-
strated capability of allowing in vivo prob-
ing of brain white-matter microstructures. 
In terms of characterizing crossing fibers, 
HARDI affords more information than the 
popular diffusion tensor imaging (DTI) 
and allows superior delineation of the 
angular microstructure of the brain white 
matter, making possible multiple-fiber 
modeling of each voxel for better charac-
terization of brain connectivity. Fiber trac-
tography allows the tracing of fiber 
bundles defined by the local maxima of the 
orientation distribution function of each 
voxel, and a pair of regions traversed by a 
significant amount of common fibers are 
considered as connected.

CONNECTIVITY MEASURES
Interregion dependence can be estimated 
with the help of correlation measures  

Connectivity Matrix

Brain Network

Fiber TrackingROIsSubject

[FIG1] Schematic illustration of the major processes involved in constructing a brain 
network using fiber tractography. A pair of regions are considered as connected if they 
are traversed by common fibers, and the numbers of connection fibers are recorded as 
elements in the connectivity matrix, which is then thresholded to retain only the 
significant connections. The nodes and intramodular connections are color coded for 
easier visualization of the communities detected via modularity maximization. The sizes 
of the vertices are weighted by the (logarithmically scaled) node betweenness.
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 evaluated using fMRI time series, cortical 
thickness, or gray-matter volume. 
Pearson’s correlation coefficient is com-
monly used for inferring connectivity from 
the measured feature values. It is defined 
as the ratio of the covariance of the two 
variables X  and Y  to the product of their 
standard deviations 1sX, sY 2

rX,Y5
E[ 1X2mX 2 1Y2mY 2 4

sXsY
,

where mX and mY  are the means of X  and 
Y, respectively. The computation of the 
partial correlation coefficient involves an 
additional step of regressing out the effect 
of a set of controlling variables, resulting 
in residuals from which the correlation 
coefficient can be computed. The control-
ling variables can include factors such as 
age, intracranial volume (ICV), or other 
sources of confounding covariances.

NETWORK ANALYSIS
We provide here formal definitions of some 
metrics commonly used in the analysis of 
brain networks. Representing a network as 
an unweighted graph G with N  nodes, its 
metrics for global efficiency Eglob and local 
efficiency Eloc can be computed as

Eglob5
1
Na

N

i51
Eglob 1 i 2 ,

Eglob 1 i 2 5 1
N2 1 a5j : j2 i[G6

1
li, j

Eloc5
1
Na

N

i51
Eloc 1 i 2 ,

Eloc 1 i 2 5 1
NGi
1NGi

2 1 2 a5i r, jr: ir r2 jr[Gi6
1

lir, jr
,

where Eglob 1 i 2  and Eloc 1 i 2  are nodal effi-
ciency metrics, li, j is the shortest path 
length between nodes i and j, Gi is a sub-
graph comprising nodes directly connect-
ed to node i, and NGi

 is the number of 
nodes of Gi. Specifically, Eglob measures 
the efficiency of parallel information 
transfer in the network, whereas Eloc

measures the efficiency of local informa-
tion transfer in the immediate neighbor-
hood of each node.

A module of G is a subset of nodes that 
are more densely connected to each other 
in the same module than to nodes outsides 

the module. For a configuration of modu-
lar organization m with nm modules, its 
modularity Q 1m 2  is defined as

Q 1m 2 5 a
nm

s51
chs

H
2 a ds

2H
b2 d ,

where H  is the total number of edges of 
G, hs is the total number of edges in mod-
ule s, and ds is the sum of the degrees of 
the nodes in module s. The modularity of 
a graph is defined as the largest value of 
modularity measures associated with all 
possible configurations of modules, which 
can be found by optimization algorithms.

Betweenness measures the centrality 
of a node in a network, and, in some sense, 
indicates the influence of the node over 
the spread of information throughout the 
network. It is calculated as the fraction of 
shortest paths between node pairs that 
pass through the node of interest. The 
betweenness centrality of a node i, is 
defined as

Bc 1 i 2 5 a
j2k2 i[G

sj, k 1 i 2
sj, k

,

where sj, k is the number of shortest paths 
from node j to k, and sj, k 1 i 2  is the num-
ber of shortest paths that traverse node i.

APPLICATIONS
Recent attempts of utilizing networks as a 
basis for understanding the brain at a “sys-
tems” level have brought new insights into 
the human brain,  demonstrating the fact 
that a comprehensive description of the 
architecture of the anatomical connectivi-
ty patterns is fundamentally important in 
cognitive neuroscience and neuropsychol-
ogy, as it reveals how functional brain 
states emerge from their underlying struc-
tural substrates and provides new mecha-
nistic insights into the association of brain 
functional deficits with the underlying 
structural disruption.

SMALL WORLD NETWORKS
Recent research has reached a consensus 
that the brain manifests small-world topol-
ogy, which implicates both global and local 
efficiencies at minimal wiring costs [7]. 
There are three classes of small-world net-
works: a) scale-free networks, character-

ized by a vertex connectivity distribution 
that decays as a power law; b) broad-scale 
networks, characterized by a connectivity 
distribution that has a power law regime 
followed by a sharp cutoff; and c) single-
scale networks, characterized by a connec-
tivity distribution with a fast (Gaussian or 
exponential) decaying tail. Each network 
has different degree of resilience to target-
ed attacks. Studies have also indicated that 
various neurological diseases, such as 
Alzheimer’s disease [8], schizophrenia [9] 
and multiple sclerosis [5], cause disrup-
tion in the small-worldness nature of the 
networks. In [8], for instance, the cluster-
ing coefficients for the left and right hip-
pocampus were found to be significantly 
reduced in a Alzheimer’s disease group 
compared to a control group.

CLASSIFICATION AND 
IDENTIFYING POPULATION 
DIFFERENCES
Research has moved on to utilize whole-
brain connectivity information as the basis 
for classification and locating population 
regional differences. In Robinson et al.’s 
work [10], for example, pattern features 
were extracted from the connectivity 
matrices of two age groups (20–30 and 
60–90 years) using principal component 
analysis (PCA) and linear discriminant 
analysis (LDA). Employing these features 
for classifying subjects from these two age 
groups, a K -fold cross validation indicates 
that a mean accuracy of 87% can be 
achieved, indicating significant connection 
changes with aging. In the same frame-
work, they have further identified the key 
differences between these two age groups.

CONCLUSION
A description of human brain connectome 
is important for the understanding  of 
brain neurological function, development, 
and disease mechanism. Effort in this 
direction can be conducive to diagnosis 
and the identification of possible biomark-
ers of neuropsychiatric disorders. This 
article introduces the fundamental con-
cepts involved in constructing a human 
brain connectome, commonly used tech-
niques, and some applications to date. The 
construction of brain connectome will 
provide a new and exciting venue for the 
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application of signal processing techniques 
in medical imaging. 
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The leading players in the medical 
ultrasound market, according to Global 
Industry Analysts, are Aloka Company, 
B-K Medical, Esaote SPA, GE Healthcare, 
Hitachi Medical Systems America, Medison 
Co. Ltd., Philips Healthcare, Siemens 
Healthcare, SonoSite, TomTec Imaging 
Systems GmbH, and Toshiba Medical 
Systems. Philips, Siemens, GE, and 
Toshiba reportedly account for about 80% 
of the global market.

The MRI market is projected to reach 
US$5.5 billion in 2010, driven by the intro-
duction of high-field systems and new 
techniques such as functional neuro imag-
ing, magnetic resonance angiography, 
noninvasive colonoscopy, and breast MR.

The key selling point in MRI device 
selection seems to be its high image qual-
ity and cost effectiveness. GE Healthcare, 
Siemens Medical Solutions, and Philips 
Medical Systems dominate the global MRI 
equipment market, according to Global 
Industry Analysts, while other prominent 

players include Esaote, Hitachi, Toshiba 
Medical Systems, Fonar Corp., IMRIS, 
and Medtronic.

Frost & Sullivan, another research 
organization that studies the medical 
imaging market, recently published a 
report suggesting there is a flurry of 
research and development (R&D) activity 
in medical imaging in Europe, particu-
larly for cardiology applications. F&S 
anticipates a significant market opportu-
nity in the echocardiography segment 
for manufacturers that can offer porta-
ble, PC-based ultrasound systems to pri-
vate practitioners.

BIG DSP REQUIREMENT
Where does digital signal processing fit 
into the medical systems market?

Databeans is projecting that reve-
nue from DSPs sold into worldwide 
medical imaging applications will 
nearly double from US$31.4 million in 
2008 to US$60.6 million in 2014 (see 

Table 1) as the market for these sys-
tems grows and the technology ad -
vances on several fronts.

One technical advancement has been 
the migration of X-rays from film to digital 
files. DSP is helping convert X-ray signals 
to digital images at the point of acquisi-
tion, with no tradeoffs in image clarity. As 
TI notes in a report on the future of medi-
cal imaging, the ability to render digital 
images in real-time has led to the use of 
digital X-ray machines in surgical proce-
dures, enabling doctors to view a precise 
image during surgery.

MRI is also improving with higher 
quality images in a fraction of the time 
required just a few years ago. Also, diffu-
sion MRIs allow researchers to create 
brain maps to study the relationships 
between disparate brand regions via trac-
tography. Functional MRIs can now rapid-
ly scan the brain to measure signal 
changes caused by changing neural activi-
ty. DSPs are also playing a key role in tele-
medicine, particularly in video  conferencing 
and telepresence systems to support a 
variety of codecs.

The use of DSP is “a common theme 
that flows through all of these examples,” 
according to the TI report. More impor-
tantly, the technology is having a major 
impact on healthcare worldwide. [SP]

[TABLE 1]  WORLDWIDE MEDICAL IMAGING SEMICONDUCTOR REVENUE 
FORECAST BY PRODUCT. 

$M 2006 2007 2008 2009 2010 2011 2012 2013 2014
09–14 
CAGR%

DSP 28.8 30.9 31.4 25.8 33.5 39.2 41.2 51 60.6 18.6%

Source: Databeans Estimates

[special REPORTS] continued from page 10
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Perceptual Quality Measurement—Towards a More Efficient 
Process for Validating Objective Models

T
he Quality of Service Metrics 
(QoSM) Committee of the 
Alliance for Telecommuni-
cation Industry Standards 
(ATIS) Internet Protocol 

Television (IPTV) In teroperability Forum 
(IIF) is tasked with defining how objec-
tive quality metrics can provide mean-
ingful IPTV performance measures. This 
group has reviewed current objective 
quality models as well as the processes 
by which such models are validated. 
This article describes current practices 
in validating objective quality models 
and presents a new, streamlined process 
that can be implemented to achieve 
more efficient and effective model vali-
dation. Of main interest for IPTV are 
models for predicting video and audiovi-
sual quality; however, the process also 
applies to the validation of perceptual 
quality models (PQMs) for other modali-
ties. The proposed process offers ven-
dors a fast route to validating objective 
PQMs while providing industry with the 
assurance of independent, unbiased 
model evaluation. 

BACKGROUND
Service providers are rolling out IPTV 
services to slow down erosion of reve-
nues from circuit-switched voice 
 services and to keep up with the com-
petition to deliver multiplay service 
offerings. To support IPTV operations, 
the need for service performance mea-
surements that can provide insights 
into the customer’s perception of the 
quality of IPTV content is apparent. 
Vendors, standards groups, and research-
ers are actively investigating meaningful 
algorithms and tools for conducting 
these measurements.

Subjective quality tests are widely 
used and support the development and 
testing of objective perceptual quality 
models (or objective models) that predict 
customer perception as a benchmark. 
However, subjective quality tests are not 
a practical solution for in-service perfor-
mance monitoring. The purpose of 
objective models is to replace subjective 
tests by estimating the perceptual quali-
ty of voice, audio, video, and multimedia. 
Objective models can use different tech-
niques to predict subjective quality. 
These techniques include full-, reduced- 
and no-reference methods and may uti-
lize pixel-domain, bit stream, packet 

data, or some combination of these 
information sources to extract parame-
ter values that then are used to predict 
quality [1]–[3]. The industry has an 
increased need for objective models as 
competition increases, and as quality 
becomes both a critical part of the value 
chain [e.g., high-definition TV (HDTV)] 
and a potential market differentiator 
between service providers.

The creation of objective models to 
compute an estimated customer opinion 
score is a complex process. Fundamental 
to the success of objective models is how 
accurately they can predict subjective 
quality ratings. A set of statistical methods 

has been defined to determine the accura-
cy of objective models [9]. 

The accuracy of objective PQMs is cur-
rently validated through various routes, 
including self-validation, contracted exter-
nal validation, and independent validation 
(e.g., by the Video Quality Experts Group 
(VQEG) [13]). Clearly, the industry will 
find great value in model accuracy data 
that is obtained through independent vali-
dation, as well as data that is based on 
appropriate subjective testing methods 
and model performance metrics.

This column considers the limita-
tions of current validation procedures, 
such as those practiced by VQEG, ITU-T 
Study Group 9 (SG9), and ITU-T Study 
Group 12 (SG12), presents work in 
progress within relevant standards 
groups (in particular the ATIS IIF 
QoSM Committee) to address these 
problems, and outlines a proposal for 
providing more effective and efficient 
model validation.

CURRENT VALIDATION 
PROCESSES: VQEG AND ITU
VQEG [13], [14] has been central to coor-
dinating efforts to perform independent 
validation of objective perceptual quality 
models in a competition-style process. 
VQEG has completed several phases of 
testing to date, and the model perfor-
mance data obtained from these tests has 
been used by the ITU to produce interna-
tional standards [7], [8], [10]–[12]. The 
VQEG process is based on voluntary con-
tributions from government organiza-
tions, research centers, universities, and 
industry. For agreed projects, VQEG pre-
pares a test plan, in collaboration with 
those who participate, that defines the 
scope of testing, the types of objective 
models that may be submitted, subjective 
test methods and test laboratories that 
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THE MAIN PREMISE IS 
THAT AN OBJECTIVE 
MODEL ALGORITHM 

DOES NOT NEED TO BE 
STANDARDIZED IN ITSELF, AS 
ITS PRIMARY REQUIREMENT 
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may perform subjective tests, model evalu-
ation criteria, and so on. 

The current VQEG process has the 
advantage of bringing together the pre-
mier experts in objective and subjective 
assessment to perform independent 
 validation of objective models. Unfor-
tunately, the relatively slow progress of 
VQEG projects means that the valida-
tion of models does not keep pace with 
industry requirements, and standard-
ized models become outdated. The test 
plans often take several years to define, 
and once they are agreed upon, the test 
phase itself (including the accumulation 
of suitable test content, preparation of 
test sequences, and completion of sub-
jective tests) is a lengthy  process. After 
project completion, the best performing 
models may be standardized, and VQEG 
then moves on to the next project. The 
approach adopted by VQEG has the con-
sequence that once a particular form of 
objective model has been validated and 
subsequently standardized, it may take 
many years before the group is able to 
perform a second validation test for that 
form of model. In fact, to date VQEG 
has not run a second validation round 
for any form of model. For example, 
full-reference TV (FR-TV) models were 
validated by VQEG in 2003 and stan-
dardized by the ITU in 2004. These 
models remain the standard so far as no 
further FR-TV validation tests have 
been performed, yet superior models 
may well have been developed in the 
meantime. The FR-TV test in particular 
did not include H.264 compression arti-
facts or IP loss impairments; conse-
quently, the current standardized 
models have not been tested for the 
conditions that are present in most of 
today’s IPTV systems.

Until recently, the VQEG process 
used Independent Test Laboratories 
(ITL) to perform subjective testing and 
model validation. More recently, VQEG 
has allowed model developers to act as 
test laboratories. This has led to a move 
away from cleanly separating the model 
development from the model validation. 
VQEG has begun working on an alterna-
tive process to validating “competing” 
models, having initiated a Joint Effort 

Group (JEG) that will test dedicated 
model components with the goal of 
building a model that combines the best 
performing modules from different 
organizations. Similarly, ITU-T SG12 
has started a series of collaborative 

 projects directed towards producing 
“best-of-breed” objective models. The 
approach taken by SG12 is to develop 
alternative objective models collabora-
tively that are then validated by the 
group. It should be noted that in the 
SG12 projects, many organizations that 
contribute objective models also per-
form the subjective tests used to validate 
the models and/or model components. 

Reviewing the approaches of VQEG 
and SG12, several limitations in the cur-
rent validation processes can be identified: 

Validating PQM models requires  ■

the acquisition of suitable multimedia 
content. Once this test material has 
been made available to model develop-
ers, it cannot be reused in future vali-
dation tests, requiring the selection 
and preparation of new content for 
subsequent tests.

The current approaches (competi- ■

tion, collaboration, etc.) have strict 
cutoff dates for model submission, 
because all models are evaluated in the 
same exercise.

Model developers are sometimes  ■

involved in the preparation of pro-
cessed video sequences or in con-
ducting subjective experiments due 
to ITL budget and time constraints, 
which is not ideal for an independent 
evaluation.

At this time, the entire process  ■

for validating PQMs is very lengthy 

and can take several years, because a 
new test plan is written and a new 
test library is created for every round 
of testing.

Once a standard has been defined  ■

and approved, it is very difficult to 
change, which means that standard-
ized models can quickly become out-
dated, and there is no process for the 
models or the standards to be updated 
in a prompt fashion.

A NEW VALIDATION PROCESS
The ATIS IIF QoSM Committee has been 
working on a series of documents that 
form the backbone to validating objec-
tive models. 

A general test plan for performing 
validation tests [4] was standardized to 
encourage industry developments where 
multiple organizations could develop 
PQMs all using the same basic test plan.  
With such a test plan in place, addition-
al specialized documents, specific for 
each type of model, would then need to 
be developed that go into more detail 
for particular types of PQMs and appli-
cations. It is recommended that for each 
type of model, a single test plan is pro-
duced so that multiple organizations 
that want to test such a model all use 
the same procedures. 

A technical report proposing a new 
process for validating objective models 
[5] has recently been completed. To date, 
standards groups combine the test pro-
cess and test plan activities with the even-
tual goal of a standardized PQM solution. 
ATIS IIF separates these two processes. 
This column describes the concepts 
specified in the ATIS technical report.

Completing the series, a third docu-
ment is planned that specifies the vari-
ous types of  perceptual  quality 
measurements for use in IPTV environ-
ments [6]. The purpose of that docu-
ment is to recommend a variety of IPTV 
quality of experience (QoE) measure-
ments that predict customer experience, 
to describe the various types of mea-
surements (e.g., parametric and bit-
stream approaches), their inputs and 
outputs, and also the points in an IPTV 
system where such measurements could 
be most useful.

VQEG HAS BEEN CENTRAL 
TO THE INDEPENDENT 
VALIDATION OF PQMs. 

UNFORTUNATELY, 
ITS RELATIVELY SLOW 

PROGRESS DOES NOT KEEP 
PACE WITH INDUSTRY 
REQUIREMENTS, AND 

STANDARDIZED MODELS 
BECOME OUTDATED.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [138]   JULY 2010

[standards in a NUTSHELL] continued

The main premise is that an objec-
tive model does not need to be stan-
dardized in itself, as its primary 
requirement is measuring quality with 
a certain level of accuracy. Also, one 
could specify various types of perceptual 
quality models by e.g., their type, ex-
pected behavior, inputs, and outputs, 
thus allowing a black-box approach 
where the internal details of algorithms 
do not need to be revealed. Instead, with 
the test process, test plan, and specifica-
tion of various types of perceptual qual-
ity measurement standardized, a 
repeatable process for model validation 
and comparison is created.

Given this, and considering 
the strengths and weaknesses of 
VQEG and SG12 approaches to 
model validation, the ATIS IIF 
QoSM Committee has produced 
an alternative process that is sim-
ilar to the current processes in 
several ways but is believed to 
strengthen their weaker aspects. 
This process has the following 
unique characteristics:

An independent validation  ■

process using a secret content 
library of video sequences 
annotated with subjective rat-

ings, allowing content to be used 
more than once. The library is pre-
pared and maintained by the ITLs; 
model developers only have access to 
the information that is publicly 
available to everybody and do not 
become involved in video creation or 
subjective testing in various ways. 
Because the library is designed to be 
reusable, it can be bigger and more 
varied than for a single test.

On-demand algorithm validation  ■

that allows model developers to have a 
model evaluated at any time, e.g., at 
the request of a customer, or when a 
new model version is released.  

Quick turn-around times for  ■

model validation rather than multi-
year testing events. This is possible 
because the test procedures and 
annotated content libraries are pre-
pared in advance, and checking 
model performance is a simple mat-
ter of running a model on the video 
sequences in the library and compil-
ing results, something that can be 
done within a few weeks. 

Spur ongoing development and  ■

rapid improvement of models, thus 
increasing model quality and accelerat-
ing availability of the best models for 
model users.

Clear, well-defined reporting tem- ■

plates, which are designed to provide 
an overview of the performance of a 
given model, as well as to facilitate easy 
comparison of multiple models. Model 
reports can be requested by model 
users from model developers or the 
ITLs. An example report is shown in 
Figure 1.

Supporting these process im - ■

provements, a validation process is 
required that consists of clearly 
defined entities and entity roles, 
focused on single algorithm submis-
sion rather than processes based on 
competition or collaboration specifi-
cally. Collaboratively created models 
would be validated in the same way 
as a single algorithm.

Only the model performance with  ■

respect to a standard test plan and 
library are published. There is no 
need for algorithm standardization 
as such. Model developers can keep 

the details of their algorithms 
secret, if they so choose, and 
license their models on their own 
terms. For example, a model can 
be developed for a single custom-
er, who can still benefit from 
independent evaluation. 

Other aspects may be quite 
similar to the current processes. 
It is envisioned that the process is 
open and could be as “democratic” 
in nature as the current processes. 
To initiate the process, ITLs, model 
developers, model users, and stan-
dards bodies should work together 

[FIG1] Example summary report [5].

Summary Report

Testing lab: XYZ
Model developer: ABC Corp.
Model: DEFG Version 1.0 (Software model)
Scenario: Standard Definition (SD)
Application: Linear fixed-line IPTV
Testing round: 4
Number of PVSs: 110

Prediction performance:
Correlation: 85% (0.85)
RMSE: 1.7
Outlier ratio: 0.02
Accuracy class: B
Transformation function: MOS = f(MOSp, a, b, c, d);
a = 15.7, b = 846, c = 0.669, d = 5.21

Computational complexity: The minimum, average, and maximum run times for the
model were 2s, 2.6s, 2.8s, respectively. This was performed on an XXX Workstation
with a YYY processor rated at 2 GHz. The platform had 2 GB of core memory and
used a Linux operating system.

[FIG2] Participants of the test process [5].

Model
Developer

Independent
Test Lab (ITL) 

Model User Third-Party
Organization

Models
Algorithms 

Reports/Results

Reports
Capabilities

Reports

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [139]   JULY 2010

to define the scope and categories under 
consideration for model validation. 

The validation process is composed of 
four building blocks (see Figure 2). The 
blocks represent the different parties need-
ed to provide a rigorous and systematic 
approach to independently validating 
objective models. 

Fundamental to the process is the 
existence of an ITL. The ITL may com-
prise one or more test laboratories and 
cannot develop objective models. The 
ITL’s operations would be coordinated 
by a third-party organization that would 
be the overall sponsor of process activi-
ties as well as the business aspects of 
the process (e.g., relation with content 
providers, facilitate democratic partici-
pation of all parties in this process, fee 
schedules, and media communications). 
This third-party organization could be a 
nonstandards (e.g., commercial) entity 
or an international standards  body such 
as ATIS or ITU.

The ITL would produce an extensive 
library of test sequences that are anno-
tated with subjective quality ratings. 
The library of test sequences needs to be 
 sufficiently large and representative of 
different video oriented services (e.g., 
HDTV, mobile) for it to be a good test of 
model performance. Furthermore, the 
library of test sequences must be secret. 
By possessing a large, secret library of 
test sequences, the ITL is able to reuse 
test materials for validating models. The 
ITL is expected to maintain and extend 
the library of test sequences over time, 
increasing existing data sets and creat-
ing new libraries to accommodate tech-
nology developments (e.g., new codecs). 
The library of test content should be 
representative of different content 
genres and should be designed with pos-
sible different model categories in mind 
(e.g., linear broadband TV versus wire-
less TV). A publicly available document 
providing a written description of the 
test content will be produced by the ITL. 
This written record of test content 
should provide a description of the video 
and, where appropriate, audio compo-
nent of each test sequence.

Once the sequence library has been 
prepared, the ITL conducts subjective 

tests on the sequences in the library for 
annotation with mean opinion scores 
(MOS). Subjective scores will be 
obtained in line with the appropriate 
 standardized subjective test procedures. 
The MOS annotations need to be main-
tained and extended along with the 
sequence library.

Once the annotated sequence library is 
in place, model developers can submit 
their models to the ITL for validation. The 
ITL will perform the validation tests by 
running the model against a large set of 
secret sequences that meet the defined 
scope of the tests. 

Once completed, the ITL prepares a 
report that details the scope of the val-
idation test and the performance of the 
model. The report is sent to the model 
developer, who can then decide wheth-
er or not to publicly release the perfor-
mance data. The summary report 
using a well- defined template will 

allow model users to compare results 
from different models and choose the 
one best suited to their needs. The 
summary report  (see Figure 1) 
includes reference to the test plan, 
category/service scenario/application 
tested, sequence library, and the num-
ber of sequences used in the validation 
test. It also specifies the prediction 
performance of the model for the set 
of PVSs in terms of evaluation criteria, 
such as correlation coefficients, pre-
diction error, or outliers. Finally, the 
report includes some indications of 
model complexity and runtime.

To compare PQMs and PQM results 
from different model developers, espe-
cially as multiple different solutions 
could be used in an operational envi-
ronment, there is a need to translate 
(or cross calibrate) the output of one 
model with that of another. Cross cali-

bration is a transformation of model 
outputs to a common scale through the 
annotated PVS database, typically using 
a linear or nonlinear fitting function 
that maps the MOS model outputs to 
the subjective MOS [15]. Computing 
this fitting function for a model is part 
of the validation and will be done by the 
ITL; the function and its coefficients 
will also be given in the summary 
report [5].

CONCLUSIONS
We described the shortcomings of cur-
rent standards-based test processes for 
evaluating the accuracy of objective 
models. Based on the work of the ATIS 
IIF QoSM Committee, we introduced 
an improved process that mitigates the 
weaker points of the current processes. 
We also indicated that there does not 
need to be a standardization compo-
nent for objective models as long as 
there is a reliable independent valida-
tion process.

The next step is to actually put this 
process in place. Practical and commer-
cial questions need to be addressed, for 
example:

Who are the ITLs? ■

Who is the third-party organization?  ■

What is the fee structure for model  ■

validation?
What is the role of VQEG, ITU, and  ■

ATIS in this process, if any? 
This is part of an ongoing discussion 

among various standards groups, 
including ATIS IIF, VQEG, ITU-T SG9 
and SG12.

RESOURCES

ATIS RESOURCES
The ATIS Web site (www.atis.org) provides 
details of ATIS standards and technical 
reports. Contributions to the ATIS IIF 
QoSM Committee are available from www.
atis.org/IIF/. 

VQEG RESOURCES
The VQEG Web site (www.vqeg.org) pro-
vides information on its past and pres-
ent test projects. The test plans and test 
reports for each project are available for 
download. Communications between 

THERE DOES NOT NEED 
TO BE A STANDARDIZATION 

COMPONENT FOR 
OBJECTIVE MODELS 

AS LONG AS THERE IS 
A RELIABLE INDEPENDENT 

VALIDATION PROCESS. 
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ATIS IIF QoSM and VQEG can be found 
under “Meeting Files” for the various 
VQEG meetings.

ITU RESOURCES
The ITU Web site (www.itu.int) has links 
to all ITU-T and ITU-R publications. ITU 
members can access working docu-
ments including the test plans for vali-
dating parametric models currently 
under investigation by Study Group 12.

AUTHORS
Robert C. Streijl (robert.streijl@att.com) 
is a principal member of technical staff in 
AT&T’s architecture and planning organi-
zation. He is the cochair of the ATIS IIF 
QoS Metrics Committee.

Stefan Winkler (swinkler@chee-
tahtech.com) is chief scientist at 
Cheetah Technologies. He is an active 
contributor to VQEG and ATIS IIF and 

cochair of the QoE Metrics Activity 
Group of the Video Services Forum.

David S. Hands (david.2.hands@bt.
com) is a research group leader with BT 
Innovate & Design. He is an active mem-
ber of ATIS IIF QoSM, ITU-T SG9, and 
VQEG standards groups.

REFERENCES
[1] D. Hands. (2007, Mar. 9–10). Video quality mea-
surement: Past, present and future. Proc. IMQA 2007,
Chiba Univ., Chiba, Japan [Online]. Available: http://
www.mi.tj.chiba-u.jp/IMQA2007/

[2] S. Winkler and P. Mohandas, “The evolution of 
video quality measurement: From PSNR to hybrid 
metrics,” IEEE Trans. Broadcast., vol. 54, no. 3, pp. 
660–668, Sept. 2008.

[3] S. S. Hemami and A. R. Reibman, “No-reference 
image and video quality estimation: Applications and 
human-motivated design,” Signal Process. Image 
Commun. (Special Issue on Image and Video Quality 
Assessment), to be published. 

[4] ATIS, “Test plan for evaluation of quality models 
for IPTV services,” ATIS-0800025, Oct. 27, 2009.

[5] ATIS, “Validation process for IPTV perceptual 
quality measurements,” ATIS-0800035, Tech. Rep., 
Dec. 28, 2009. 

[6] QoE Measurement Recommendations and 
Framework, ATIS-0800031, work in progress.

[7] Objective Perceptual Video Quality Measurement 
Techniques for Standard Definition Digital Broadcast 
Television in the Presence of a Full Reference, ITU-R 
Recommendation BT.1683, June 2004.
[8] Objective Perceptual Video Quality Measurement 
Techniques for Digital Cable Television in the Pres-
ence of a Full Reference, ITU-T Recommendation 
J.144, Mar. 2004.

[9] Method for Specifying Accuracy and Cross-Cali-
bration of Video Quality Metrics (VQM), ITU-T Rec-
ommendation J.149, Mar. 2004.

[10] Perceptual Visual Quality Measurement Tech-
niques for Multimedia Services Over Digital Cable 
Television Networks in the Presence of a Reduced 
Bandwidth Reference, ITU-T Recommendation J.246, 
Aug. 2008.

[11] Objective Perceptual Multimedia Video Quality 
Measurement in the Presence of a Full Reference,
ITU-T Recommendation J.247, Aug. 2008.

[12] Perceptual Video Quality Measurement Tech-
niques for Digital Cable Television in the Presence of 
a Reduced Reference, ITU-T Recommendation J.249, 
Jan. 2010.

[13] Video Quality Experts Group (VQEG) official Web 
site [Online]. Available: http://www.vqeg.org/ 

[14] K. Brunnstrom, D. Hands, F. Speranza, and A. 
Webster, “VQEG validation and ITU standardization 
of objective perceptual video quality metrics,” IEEE
Signal Processing Mag., vol. 26, no. 3, pp. 96–101, 
May 2009.

[15] ATIS, “Methodological framework for specifying 
accuracy and crosscalibration of video quality metrics,” 
ATIS Tech. Rep. T1.TR.72-2001, Oct. 2001.  [SP]

The fourth article in this issue, by 
Pham et al., describes how digital 
 topology is used to compute mathemati-
cal representations of the brain’s com-
plex and varied structures. Such methods 
are central to mapping the brain and can 
help to model global connectivity. 

The most sophisticated of today’s 
medical imaging techniques are based on 
tomographic reconstruction, a general 
approach in which images of the body’s 
interior are computed from numerous 
images acquired from outside the body. 
Tomographic reconstruction is an 
inverse problem, in which the goal is to 
invert a sometimes complicated system 
describing the physical process of data 
acquisition. Some of the basic concepts 
of tomography date back to 1917, when 
Johann Radon described a formalism 
now known as the Radon transform. Yet, 
in spite of decades-long interest in the 
problem of reconstructing medical imag-
es, the past few years have seen an explo-
sion of new discoveries about the nature 
of this inverse problem and its solution.

The fifth article in this issue, by 
Clackdoyle and Defrise, discusses dra-
matic recent developments in the solu-
t ion of  the tomographic image 
reconstruction problems, overturning 
long-held notions about fundamental 
issues in this problem domain. In par-
ticular, the article reviews advances 
with respect to reconstruction from 
incomplete data, and the so-called “inte-
rior problem.”

Next, Fessler describes so-called 
model-based approaches to recon-
struction in magnetic resonance imag-
ing (MRI), an alternative to classical 
approaches based on direct Fourier 
inversion. These approaches recognize 
the complex nature of real-life MRI 
data, which include, for example, non-
Fourier physical effects and nonlinear 
magnetic fields. In addition, these 
approaches can accommodate deliber-
ate undersampling schemes adopted 
to permit fast scanning; thus, this 
work relates also to the field of com-
pressive sensing, which was the sub-

ject of a prior issue of IEEE Signal 
Processing Magazine.

Finally, this issue concludes with a 
article by Ying and Liang, which dis-
cusses parallel MRI, an approach in 
which a phased array of coils is used to 
perform MRI more rapidly than tradi-
tional methods. Parallel MRI is a cut-
ting-edge technology in medical imaging 
in which signal processing plays a cen-
tral role. This article focuses on the sig-
nal processing issues of multichannel 
sampling and filter-bank theory.

A WORD OF THANKS
We were pleased and overwhelmed by 
the large number of outstanding articles 
submitted for consideration in this 
issue, and we regret that we could not 
accommodate all of them. We are very 
grateful to the authors and reviewers 
for their exceptional efforts and 
thoughtful contributions. We also thank 
Area Editor Dan Schonfeld for his valu-
able support and assistance throughout 
the process. [SP]
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From the Beginning

In 1913, Proceedings of the IEEE 
covered numerous key events:

 Edwin H. Armstrong, the “father of FM  radio,”  

 patented his regenerative receiver, making 

 possible long-range radio reception 

 William David Coolidge invented the modern X-ray  

 tube, making possible safe and convenient 

 diagnostic X-rays

 AT&T began installing Lee De Forest’s Audion, the  

 fi rst triode electron tube, in networks to boost  

 voice signals as they crossed the United States

 The fi rst issue of Proceedings of the IRE began to  

 chronicle these events

Proceedings of the IEEE contributors are a “Who’s 

Who” of 20th century innovators, from Armstrong 

to Zworykin. Follow the ideas of Guglielmo Marconi, 

Lee De Forest, Grace Hopper, Claude Shannon, and 

John Mauchly in their own words, and feel the 

excitement of the greatest burst of technological 

accomplishment in the history of the planet.

Now you have the unique 

opportunity to discover 

95 years of groundbreaking 

articles via IEEE Xplore®

Every issue is available 

online, back to the very 

fi rst: Volume 1, Issue 1, 

January 1913. 

TO SUBSCRIBE

Call: +1 800 678 4333

or +1 732 981 0060

Fax: +1 732 981 9667

Email: customer-service@ieee.org

www.ieee.org/proceedings

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

___________________

mailto:customer-service@ieee.org
http://www.qmags.com/clickthrough.asp?url=www.ieee.org/proceedings&id=15579&adid=P141A1
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [142]   JULY 2010 1053-5888/10/$26.00©2010IEEE

[best of THE WEB]
Alessandro Vinciarelli 

and Maja Pantic

I
n this issue, “Best of the Web” focus-
es on introducing the social signal 
processing network (SSPNet), a large 
European collaboration aimed at 
establishing a research community in 

social signal processing (SSP), the new, 
emerging domain aimed at bringing social 
intelligence in computers. 

One of the most exciting challenges 
that a researcher can face is to pioneer 
a new domain and to foster its accep-
tance and recognition in the scientific 
community. The success in such an 
endeavor depends on how promising 
the new domain is in terms of scientific 
results but also on a second factor that 
should not be neglected, namely how 
difficult it is to enter the new domain 
for an institution, group, or even an 
individual researcher. As a matter of 
fact, entry barriers can prevent even the 
most interested researchers from enter-
ing a fully or largely unexplored domain 
no matter how interesting and promis-
ing the domain is. This is the consider-
ation that drives the efforts of the 
SSPNet. The SSPNet involves some of 
the earliest SSP researchers and its 
ultimate goal is to smooth, if not to 
eliminate, the three main entry barriers 
that people face when starting to work 
on SSP, the lack of knowledge, data, 
and tools.

The strategy of the SSPNet is ref-
lected on a Web portal (www.sspnet.eu) 

that aims not only at diffusing informa-
tion about SSP but also at providing the 
most important and yet difficult to 
obtain resources for working in SSP, 
i.e., the knowledge, data, and tools cor-
responding to the above-mentioned bar-
riers. The SSPNet portal has been online 
since August 2009 and, thanks to a col-
laborative effort involving both SSPNet 
members (11 institutions scattered 
across Europe) and contributors from 
the rest of the scientific community, 
provides a large amount of SSP-related 
resources. Both data and tools (see 
below for more details) are freely avail-
able to the scientific community. To 
share resources through the SSPNet 
portal is not only an important contri-
bution but also an excellent opportunity 
for achieving high visibility in the emer-
gent and dynamic community growing 
around SSP. 

In addition to the above-mentioned 
resources, the portal offers an up-to-
date view of the SSP state of the art 
through an extensive (often updated) 
bibliography and the Virtual Learning 
Centre (VLC), a repository of lecture 
and presentation recordings collected at 
scientific and training events revolving 
around SSP. This contributes to the 
elimination of the last important entry 
barrier, i.e., the lack of knowledge.

SOCIAL SIGNAL PROCESSING
Social intelligence is the ability of deal-
ing effectively with the complex web of 
social interactions we cope with in our 
everyday life and, at its core, it consists 
of effectively perceiving, correctly under-
standing, and appropriately reacting to 
social signals, the complex constellations 
of nonverbal behavioral cues (e.g., facial 
expressions, gestures, or vocalizations) 
through which we express our relational 

attitudes (e.g., empathy, disagreement, 
or hostility) with respect to others and 
social situations. 

In this respect, SSP aims to answer-
ing the following three main questions:

Is it possible to detect nonverbal  ■

behavioral cues from signals captured 
through microphones, cameras, or 
any other suitable sensor?

Is it possible to automatically infer  ■

and understand social signals from 
nonverbal behavioral cues detected in 
possibly multimodal signals?

Is it possible to synthesize appro- ■

priate social signals (as a set of syn-
thesized nonverbal behavioral cues) 
via different forms of embodiment?
In correspondence to the above ques-

tions, two main kinds of technologies are 
involved in SSP: approaches for analysis 
and synthesis of nonverbal behavioral 
cues like, e.g., facial expression analysis 
and synthesis, prosody extraction and 
synthesis, gesture and posture recogni-
tion, and synthesis, as well as techniques 
for inferring social signals from behav-
ioral cues like, e.g., machine learning and 
pattern recognition. Equally important 
for both kinds of technology is the inves-
tigation of psychological, anthropological, 
and social laws underlying human-hu-
man interactions. These laws and princi-
ples identify the predictable behavioral 
patterns that actually allow technology to 
be effective with social signals.

Synthesis and understanding of social 
signals are mostly data driven, large cor-
pora of data annotated in terms of social 
signals that become a fundamental 
resource, hence the data barrier. 
Furthermore, as nonverbal behavioral 
cues are typically captured with differ-
ent sensors (e.g., facial expressions 
with cameras and vocalizations with 
microphones), tools addressing a wide 

Please send suggestions for Web 
resources of interest to our readers, 
proposals for columns, as well as 
general feedback, by e-mail to Dong 
Yu (“Best of the Web” associate edi-
tor) at dongyu@microsoft.com.

Techware: www.sspnet.eu: 
A Web Portal for Social Signal Processing
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spectrum of diverse needs become cru-
cial, hence the tool barrier. Finally, the 
multidisciplinary nature of SSP, span-
ning across multiple technical compe-
tences  ( speech  process ing  and 
synthesis, computer vision) and human 
sciences, makes it difficult for a group 
or even for an institution to have all 
necessary knowledge at disposition, 
hence the knowledge barrier. 

The three barriers shape the struc-
ture of the SSPNet portal and drive the 
selection of the resources being accumu-
lated in its different sections. The mate-
rial on the portal is at disposition of the 
scientific community for research pur-
poses (in some cases upon signing an 
end user license agreement) and any 
contribution is welcome as long as it is 
annotated rigorously (in the case of the 
data) and relevant to the SSP research. 
The portal guarantees storage of the 
material and, most importantly, high vis-
ibility in the emergent SSP community.

RESOURCES TO BREAK THE 
KNOWLEDGE BARRIER
As SSP is a young domain, its state of 
the art is still relatively limited, but it is 
rapidly growing, and it is fragmented 
across a large number of disciplines and 
research areas. Thus, it can be difficult 
for people entering the domain to iden-
tify the relevant literature and to access 
the latest developments in the field. To 
this end, the SSPNet portal hosts two 
important sections. The first is an 
exhaustive bibliography including not 
only the most important SSP works 
published so far, but also a large num-
ber of works providing the necessary 
background to enter the field (http://
sspnet.eu/category/sspnet_resource_
categories/resource_type_classes/publi-
cation/).  The repository is fully 
searchable in terms of meta data (title 
and authors) as well as in terms of tags 
defined by SSPNet researchers and cor-
responding to the most important 
aspects of SSP (http://sspnet.eu/resourc-
es/search/) like the behavioral cues 
being investigated in the article (e.g., 
“facial analysis” and “speech synthe-
sis”), or the modeling classes (“linguis-
tic modeling” and “psychological 

modeling”). At the time this column 
was written, the bibliography included 
around 300 titles, but it is constantly 

increasing with contributions from 
both SSPNet researchers and the rest of 
the scientific community.

A slightly modified version of this cartoon appeared in IEEE Antennas and Propagation 
Magazine, vol. 52, no. 1, p. 201, 2010. 

Senior Research Scientist
For Signal and Image Processing

The RDECOM CERDEC Night Vision and Electronic Sensors Directorate, Ft Bel-

voir, VA, is looking for an Engineer or Scientist to serve in a Scientific or Pro-

fessional (ST) Position as the Senior Research Scientist for Signal and Image 

Processing.  NVESD is located approximately 30 minutes south of Washington, 

D.C., and is the Army’s premier laboratory for the development of next generation 

electro-optical, infrared and countermine sensor technology.  Over 400 engineers, 

scientists and technicians work together in a collaborative environment with co-

located customers to field the latest EO/IR and countermine technology to the 

Soldier.  Position is responsible for the development of new signal and image 

processing techniques that extract and optimize information from advanced sen-

sors, optimizing and identifying the signal(s) associated with targets/threats while 

separating them from signals associated with background clutter and compression 

of sensor data for transmission over tactical sensor networks.  The ST position 

reports directly to the Director of NVESD and is expected to identify and solve sig-

nal/image processing problems at the strategic level that have far ranging impacts 

to the Army.

The incumbent of this position must have specialized experience in sensor signal 

and image processing technology.  ST positions represent the highest level of 

technical accomplishment and are of very limited number (approximately fifty ST 

positions within the Army).  Typically, applicants for ST positions are expected to 

have a graduate degree, significant research experience, and a national or inter-

national reputation in his/her field.

How to apply:  U.S. Citizenship and ability to obtain a TOP SECRET security 

clearance is required.  Refer to www.opm.gov, job announcement number DA-ST-

01-10 for application requirements/process and additional information.  Questions 

should be directed to Mrs. Genie Shires, 703-704-1140, or by email:

genie.shires@us.army.mil
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[best of THE WEB] continued

The second important section of the 
portal dedicated to the knowledge bar-
rier is the VLC (http://sspnet.eu/virtual-
learning-centre/), a repository of lecture 
and presentation re cordings collected at 
scientific events (workshops, special ses-
sions) and training initiatives (summer 
schools, courses) dedicated to SSP. 
When this column was being written, 
the VLC included around 40 presenta-
tions collected at the first events orga-
nized by the SSPNet. An extensive 
recording campaign is taking place to 
further improve depth and breath of the 
material (the inclusion of 80–100 more 
presentations is planned by the end of 
2010). The VLC is fully searchable in 
terms of keywords appearing in the pre-
sentations slides, a simple textual query 
(like those submitted to Web search 
engines) returns presentation intervals 
corresponding to those slides that are 
detected as relevant to the query itself. 

These two sections of the portal make 
it possible for any interested researcher 
to acquire the necessary knowledge 
about the current state of the art in SSP, 
including most recent trends, as well as 
about the background necessary to deal 
with SSP problems.

RESOURCES TO BREAK 
THE DATA BARRIER
In SSP, data typically consist of large cor-
pora of video and audio recordings por-
traying social interactions. The collection 
of this kind of data is one of the most 
expensive and time-consuming aspects of 
SSP. On one hand, recording social inter-
actions often requires large experimental 
apparatuses like smart meeting rooms, or 
devices capable of synchronizing multiple 
sensors. On the other hand, data must be 
annotated, i.e., trained observers must 
identify the social phenomena taking 
place in the recordings, at the exact time 
when they appear and following a rigor-
ous methodology that allows repeatability 
of the experiments and a sufficient degree 
of objectivity (in terms of agreement 
between multiple annotators). Such a 
process can take significant amount of 
time, especially when the corpus is large 
and the annotation is fine grained (e.g., 
the annotation of facial expressions 

requires to track every facial muscle dur-
ing the time a face is portrayed).

The SSPNet portal hosts a data reposi-
tory that, at the time this column was being 
written, contained around 240 h of anno-
tated material (http://sspnet.eu/category/
sspnet_resource_categories/resource_type_
classes). The data repository includes, 
among others, the Augmented Multiparty 
Interaction (AMI) Meeting Corpus (150 
meeting recordings annotated in terms of 
roles, dominance, and subjectivity), the 
Canal9 Database (75 television debates 
annotated in terms of conflict, roles, agree-
ment and disagreement), the Belfast 
Naturalistic Database (298 clips showing 
125 speakers in both neutral and emotional 
states annotated in terms of acoustic 
 features), the Human Communication 
Research Centre (HCRC) Map Task Corpus 
(128 task oriented dialogues annotated in 
terms of discourse phenomena), the IDIAP 
Head-Pose Database (eight meetings anno-
tated in terms of participant head pose), 
the Green Persuasive Database (eight dia-
logues annotated in terms of persuasive 
behavior), the ICSI Meeting Corpus (75 
meeting recordings), the Man-Machine 
Interaction (MMI) Facial Expression 
Database (2,894 video clips annotated 
in terms of facial expressions), and the 
FreeTalk Corpus (a collection of Japanese 
phone calls annotated in terms of inter-
actional phenomena).

RESOURCES TO BREAK 
THE TOOL BARRIER
Once the interested researchers know 
what SSP is about and have the relevant 
data at disposition, the last barrier is the 
lack of suitable tools to perform actual 
research work. This applies, for 
instance, to researchers who work on 
the automatic understanding of social 
signals but do not have the competenc-
es for the extraction of nonverbal behav-
ioral cues or to researchers who know 
how to process only one modality (e.g., 
speech) but would like to develop 
approaches involving other modalities 
as well (e.g., gestures). 

For this reason, the SSPNet portal 
provides a repository of tools that 
addresses diverse needs in SSP work 
(http://sspnet.eu/2009/12/gabor-facial-

point-detector/). While this column was 
being written, the repository contained 
the Nite XML tool kit (an open source 
cross-platform framework for handling 
multimodal annotations that are 
related both temporally and structur-
ally), a salient point detector for human 
gestures (it finds spatio-temporal 
salient points in an image sequence), a 
real-time gaze and head-pose estima-
tion system (it can use a plain Web 
camera mounted on top of the user’s 
screen and produces two-dimensional 
yaw/pitch vectors for the user’s eye gaze 
and head pose, including roll), PRTools 
(a toolbox for pattern recognition algo-
rithms), the SEMAINE research plat-
form (an open-source software package 
containing state-of-the-art software 
tools for audio-visual behavior analysis 
and synthesis), and the Gabor facial 
point detector (combining face detec-
tion with facial point detection).
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[dates AHEAD]
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Please send calendar submissions to: 
Dates Ahead, c/o Jessica Barragué, IEEE 
Signal Processing Magazine 445 Hoes Lane, 
Piscataway, NJ 08855 USA, 
e-mail: j.barrague@ieee.org
(Colored conference title indicates  
SP-sponsored conference.)   

2010
[JUNE]
The 11th IEEE International Workshop on 
Signal Processing Advances in Wireless 
Communications (SPAWC 2010)
20–23 June, Marrakech, Morocco. 
General Cochairs: Mounir Ghogho and 
Ananthram Swami
URL: http://www.spawc2010.org/

2nd International Workshop on Quality 
of Multimedia Experience (QoMEX 2010)
21–23 June, Trondheim, Norway.
General Cochairs: Andrew Perkis and 
Sebastian Möller
URL: http://www.qomex.org/

[JULY]
The IEEE International Conference on 
Multimedia & Expo (ICME 2010)
19–23 July, Singapore. 
General Chairs: Yap-Peng Tan and Oscar C. Au
URL: http://www.icme2010.org

[AUGUST]
The 6th IEEE International Conference 
on Natural Language Processing and 
Knowledge Engineering 
(IEEE NLP-KE’10)
21–23 August, Beijing, China. 
General Chairs: Fuji Ren and 
Yixin Zhong
URL: http://caai.cn:8080/nlpke10/
index.html

The 2010 International Workshop on 
Machine Learning for Signal Processing  
(MLSP 2010)
29 August–1 September, Kittilä, Finland. 
General Chair: Erkki Oja
URL: http://mlsp2010.conwiz.dk/

[SEPTEMBER]
2010 International Conference on 
Image Processing (ICIP 2010)
26–29 September, Hong Kong.
General Chair: Wan-Chi Siu
URL: http://www.icip2010.org

[OCTOBER]
The 6th IEEE Sensor Array and 
Multichannel Signal Processing 
Workshop (SAM ‘10)
4–7 October, Israel. 
General Cochairs: Hagit Messer and 
Jeffrey L. Krolik
URL: http://www.sam-2010.org/

2010 IEEE Workshop on Signal Processing 
Systems (SiPS 2010)
6–10 October, San Francisco, California. 
General Cochairs: Shuvra Battacharyya and 
Jorn Janneck
URL: http://www.sips2010.org/

2010 IEEE International Symposium on 
Phased Array Systems and Technology 
(ARRAY’10)
12–15 October, Waltham, Massachusetts.
Conference Chair: Mark Russell 
URL: http://www.array2010.org/

[NOVEMBER]
2010 2nd International Conference on 
Audio, Language, and Image Processing
23–25 November 2010, Shanghai, China.
General Chairs: Fa-Long Luo, Wanggen Wan, 
and Thomas Sikora
URL: http://www.icalip2010.cn/

[DECEMBER]
28th Picture Coding Symposium (PCS’10)
7–10 December, Nagoya, Japan. 
URL: http://www.pcs2010.org/

2010 IEEE Spoken Language Technology 
Workshop (SLT’10)
12–15 December, Berkeley, California. 
General Chairs: Dilek Hakkani-Tür and 
Mari Ostendorf
URL: http://www.slt2010.org/
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[in the SPOTLIGHT] continued from 152

controlled device, and rely entirely on 
the brain to adapt to this fixed mapping. 
Studies using invasive recording of 
 single neurons or neural populations 
show that the motor system can rapidly 
learn to generate appropriate patterns 
for a fixed mapping (e.g., [3]). However, 
with EEG in humans, the same 
approach may take months to achieve 
an adequate level of performance [4]. 
Current approaches therefore typically 
rely on both user adaptation and 
machine learning. EEG activity patterns 
are recorded from the user prior to BCI 
use and this data is utilized to train a 
pattern recognition algorithm for clas-
sification or regression. Data collected 
from subsequent sessions are then used 
to further update the classifier or 
regresser to the user’s most recent brain 
patterns. Simultaneous online adapta-
tion by the user and BCI remains a topic 
of active research.

SIGNAL TYPES USED 
IN NONINVASIVE BCIS
The two major types of EEG signals 
used in BCIs are evoked potentials 
(EPs) and oscillatory activity patterns. 
EPs are electrical potential shifts that 

are phase-locked to external perceptual 
events such as a rare visual stimulus. 
EPs are typically analyzed by averaging 
EEG data over time beginning at the 
start of the perceptual event for a dura-
tion of up to 1 s. Oscillatory activity 
patterns, on the other hand, can be 
voluntarily induced by the user, for ex-
ample, through the imagination of kin-
aesthetic body movements. Such 
imagery typically causes a decrease or 
increase in power in particular 

 frequency bands. This decrease or in-
crease in power is usually referred to as 
event-related desynchronization (ERD) 
or event-related synchronization 
(ERS), respectively. 

Since EPs are stereotypical brain re-
sponses that are stable over time, very 
little adaptation may be required on the 
part of the user. Oscillatory patterns of a 

user, however, typically change over 
time as a result of feedback during BCI 
use, making parameters that were 
learned offline suboptimal. Co adaptation 
is therefore required: brain signals re-
corded during feedback are analyzed to 
track changes in oscillatory patterns and 
the BCI is updated whenever required. 

The two examples below illustrate the 
use of EPs and oscillatory patterns for 
achieving brain-computer interaction in 
physical and virtual environments (VEs). 

BRAIN COMPUTER INTERFACING 
USING EVOKED POTENTIALS
One type of EP that has been used suc-
cessfully in BCIs is the P300. The P300 is 
so named because it is characterized by a 
positive potential shift about 300 ms 
after the presentation of a perceptually 
significant event embedded within a 
series of routine stimuli. 

Figure 2(a) illustrates an experimen-
tal paradigm that uses the P300 to allow 
a user to select from a menu of choices. 
The choices are presented in a grid for-
mat on a computer screen. The choices 
in this experiment correspond to seg-
mented images of objects from the cur-
rent field of vision of a humanoid 

[FIG2] Two examples of noninvasive BCIs. (a) BCI based on EPs. 1) Averaged response over ten trials for attended (P300, solid line) and
unattended images (dashed line). 2) Humanoid robot in front of two objects waiting for input from BCI user. 3) User attends to image 
of desired object while borders are randomly flashed (red square). 4) Humanoid robot picks up the object selected by the user. (b) BCI 
based on oscillatory activity. 1) Four trials of event related synchronization in the 10–13 Hz frequency band induced by foot motor 
imagery initiated at time 0 s. 2) BCI user navigating through a VE. 3) Map of the VE showing the trajectory of the BCI user. Yellow 
markers indicate locations of coins the user was instructed to collect.
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helper robot [5]. The P300 (Figure 2(a), 
Panel 1) is used to infer which object 
the BCI user would like the robot to 
pick up for transport to a different loca-
tion (Figure 2(a), Panels 2–4). Once the 
object has been picked up, the menu 
switches to images of possible destina-
tion locations and the P300 is again 
used to infer the user’s choice of a des-
tination for the robot.

To make a selection using the P300, 
the user focuses his or her attention 
on the image of choice while the bor-
ders of the images are flashed one at a 
time in a random order. Each image is 
flashed multiple times in this random 
order. Flashes on the attended image 
generate P300 responses while the 
other flashes do not (see Figure 2(a), 
Panel 1). 

A linear support vector machine 
(SVM) with slack variables [6] was 
trained to discriminate between P300 
and non-P300 responses. Labeled train-
ing data for this purpose was obtained 
in a 10-min data collection protocol at 
the beginning of the experiment. 

The input to the SVM was a low-di-
mensional feature vector obtained by 
applying a small set of spatial filters to 
32 channels of EEG data recorded from 
electrodes placed over the entire scalp. 
These filters are “spatial” because they 
are applied not to samples over a time 
period but to the 32 samples spatially 
distributed over the scalp. The output 
of a filter is a linear weighted combina-
tion of the 32 EEG channels at each 
time step. Each channel was first band 
pass filtered in the 0.5–30 Hz range to 
exclude noise typically present at high-
er frequencies. 

The spatial filters were learned from 
the labeled data as follows. Let E  denote 
the 32 3 N  matrix of EEG data, where 
N  is the number of time points (in this 
case, representing a duration of 500 ms 
from the onset of each flash). Applying a 
32 3  1 spatial filter f  to the 32-chan-
nel EEG data results in the following 
time series of filtered data: 

x5 f TE.

To aid classification, we would like a 
filter f  that maximizes the squared dis-

tance between the means of the filtered 
data for the two classes (P300 and non-
P300 responses) while minimizing the 
within-class variance. This is equivalent 
to maximizing the criterion

J 1 f 2 5 tr 1Sb 2
tr 1Sw 2 ,

where tr  denotes trace of a matrix, and 
Sb  and Sw  are the between-class and 
within-class scatter matrix, respectively, 
of the filtered data x. Maximizing J  can 
be shown to be equivalent to a general-
ized eigenvalue problem whose solution 
is a set of orthonormal eigenvectors (fil-
ters) f ordered by their eigenvalues: the 
larger the eigenvalue, the more dis-
criminative the filter (see [5] for 

details). The three filters with the three 
largest eigenvalues were found to cap-
ture most of the discriminative infor-
mation for the training data. These 
filters were applied to the 32-channel 
EEG data to yield three filtered outputs 
at each time step. This low-dimensional 
filtered time series data was used to 
train the classifier. 

During the operation of the BCI, the 
image with the highest number of P300 
classifications after the completion of all 
flashes was selected as the user’s choice. 
An average classification accuracy of 
95% across nine users was achieved for 
discriminating between four choices, 
using five flashes per choice. With the 
implemented rate of four flashes per 
second, the selection of one out of four 
options takes 5 s, yielding an informa-
tion transfer rate of 24-b/min. 

BCI USING OSCILLATORY ACTIVITY
In the P300-based BCI described above, 
command generation was synchronized 
with an externally generated stimulus 
or cue. Such BCIs are called cue guided. 
In contrast, BCIs that allow the user to 

voluntarily modulate brain activity 
wheneve the user wishes to issue a com-
mand are called self-paced. Self-paced 
BCIs are typically based on detecting 
changes in oscillatory activity. For 
example, imagining movements can 
cause changes in oscillatory EEG activi-
ty in the 8–30 Hz frequency range over 
sensorimotor areas (Figure 2(b), Panel 
1). Furthermore, different types of imag-
ined movements can result in different 
oscillatory patterns which can be classi-
fied using machine learning. 

As an example, consider navigating 
in a VE: one could use left hand, right 
hand, and foot motor imagery to move 
left, right, and forward, respectively 
[7]. The subject’s task in the experi-
ment was to navigate and find coins 
that are scattered randomly at different 
locations in the environment (Figure 
2(b), Panels 2–3). A committee of 
Fisher’s linear discriminant analysis 
(LDA) classifiers [6] with majority vot-
ing was trained to discriminate between 
the three types of motor imagery. An 
additional LDA classifier was trained to 
detect whether the subject was engaged 
in motor imagery or not; only when 
motor imagery was detected was the 
committee of classifiers used to predict 
the type of movement. 

Features for classification were esti-
mated from 1-s segments by band-pass 
filtering the EEG signal for several fre-
quency bands, and squaring and calculat-
ing the mean over the squared values for 
each band in each segment. To decrease 
variability, features used in classification 
were based on the logarithm of the band 
power estimates. The most discrimina-
tive frequency bands were identified for 
each subject independently. To allow 
real-time interaction, classification was 
performed every 40 ms. Given the focus 
on motor imagery, data was recorded 
from six EEG sensors placed over appro-
priate sensorimotor areas. Techniques 
for online muscle artifact detection and 
eye movement reduction were also used 
to reduce contamination of the EEG sig-
nal (see [7] for details). 

After a total of about five hours of co-
adaptive training over several days, the 
average three-class accuracy of the LDA 

THE TASK OF THE BCI IS 
TO IDENTIFY AND PREDICT 
BEHAVIORALLY INDUCED 
CHANGES OR “COGNITIVE 

STATES” IN A USER’S 
BRAIN SIGNALS.
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[in the SPOTLIGHT] continued

committee classifier reached approximate-
ly 80%, with a false positive rate for motor 
imagery detection (by the additional LDA 
classifier) of about 17%. Subjects were 
able to successfully use the BCI to navi-
gate and locate the coins in the environ-
ment (Figure 2(b), Panel 3).

NONINVASIVE BCIS: THE FUTURE
The noisy nature of EEG and the fact 
that brain activity patterns are typically 
subject-specific means that signal 
 process ing and subject-speci f ic 
 optimization are  essential for success-
ful brain-computer interaction. The 
nonstationarity and inherent variability 
of the EEG, along with limited sample 
size and limited knowledge about the 
underlying signal, makes BCIs a chal-
lenging domain for signal processing. 

Much of past BCI research has focused 
on cue-based BCIs, where the mental 
states are more or less well defined. An 
important challenge for the future is the 
design and implementation of self-paced 
BCIs, where a number of distinct pat-
terns have to be reliably detected in 
ongoing brain activity. Although there 
have been several  prototype systems 
(e.g., the navigation system discussed 
above), there is room for improvement. 

Another important issue is usability. 
Current electrode caps and wet elec-
trodes are not practical for everyday use 
in nonlaboratory settings. Future 
recording devices will need to be less 
time consuming to set up, more com-
fortable to wear, and less expensive to 
purchase and maintain. The first gener-
ation of wireless neuro-signal recording 
devices with dry electrodes have started 
appearing on the market (e.g., Emotiv 
Systems, San Francisco, California). 
Whether and to what extent these new 
technologies prove to be useful for BCI 
applications remains to be seen.

Finally, the problem of coadaptation 
of brain and machine in BCIs presents an 
interesting challenge for pattern recog-
nition and machine-learning algorithms. 

Although some promising preliminary 
results have been obtained, an overarch-
ing theory of coadaptation remains to be 
developed. Such a theory would entail 
finding statistical methods that can pre-
dict changes in brain activity, allowing 
the BCI to adapt in sync with the human 
user for achieving the common goal of 
direct brain-computer interaction with 
the external world. 
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R
ecently, CNN reported on the 
future of brain-computer 
interfaces (BCIs) [1]. BCIs 
are devices that process a 
user’s brain signals to allow 

direct communication and interaction 
with the environment. BCIs bypass the 
normal neuromuscular output pathways 
and rely on digital signal processing and 
machine learning to translate brain sig-
nals to action (Figure 1). Historically, 
BCIs were developed with biomedical 
applications in mind, such as restoring 
communication in completely paralyzed 
individuals and replacing lost motor 
function. More recent applications have 
targeted nondisabled individuals by 
exploring the use of BCIs as a novel input 
device for entertainment and gaming.

The task of the BCI is to identify and 
predict behaviorally induced changes or 
“cognitive states” in a user’s brain sig-
nals. Brain signals are recorded either 
noninvasively from electrodes placed on 
the scalp [electroencephalogram (EEG)] 
or invasively from electrodes placed on 
the surface of or inside the brain. BCIs 
based on these recording techniques 
have allowed healthy and disabled indi-
viduals to control a variety of devices [2]. 
In this article, we will describe different 
challenges and proposed solutions for 
noninvasive brain-computer interfacing. 

CHALLENGES IN NONINVASIVE 
BRAIN COMPUTER INTERFACING
EEG has emerged as the single most 
important noninvasive source of brain 
signals for brain-computer interfacing in 
humans. Two major problems confront-
ing BCI developers using EEG are its 
nonstationarity and its inherent variabil-
ity. Data from the same experimental 

paradigm but recorded on different days 
or even different times on the same day 
are likely to exhibit differences due to, 
for instance, shifts in electrode positions 
between sessions or changes in electro-
mechanical properties of the electrodes 
(e.g., changing impedances). Additionally, 
the noisy, nonlinear superposition of the 
electrical activity of large populations of 
neurons as measured on the scalp can 
mask the underlying neural patterns and 
hamper their detection. The user’s cur-
rent mental state (e.g., due to excessive 
workload or stress) may impact the abili-
ty to focus and generate specific mental 
events. Due to these factors, statistical 

signal processing and machine learning 
techniques play a crucial role in recog-
nizing EEG patterns and translating 
them into control signals. 

BRAIN-COMPUTER COADAPTATION
An interesting problem confronting BCI 
developers is that the brain itself is a 
highly adaptive device, raising the ques-
tion of how much of the learning should 
be relegated to the machine and how 
much should be left to the brain. At one 
extreme are approaches that fix a map-
ping a priori between the brain and a 

Brain-Computer Interfacing

Rajesh P.N. Rao and 
Reinhold Scherer

[FIG1] Basic components of a BCI. Brain activity is translated into a control signal for an 
external device using a sequence of processing stages. The user receives feedback from 
the device, thereby closing the loop. 
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