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Born Oct. 7, 1945 in Amritsar, India, Manbir Singh earned his Ph.D. in physics
from UCLA in 1971, before conducting his postdoctoral studies in biomedical physics at
UCLAs Laboratory of Nuclear Medicine and Radiation Biology.

He later spent one year as a Visiting Scholar of the American Heart Association at the
Mayo Clinic in Rochester, Minn., where he conducted the first studies in single-photon
emission computed tomography (SPECT). He joined the Department of Radiology at
USC in 1977 and received an appointment in biomedical engineering in 1988.
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in three dimensions and was one of the first investigators to demonstrate the synergism
of CT scans and nuclear medicine SPECT imaging in detecting and visualizing both the
anatomy and function of the heart.

He was the nationally elected AdCom representative for Nuclear Medical Sciences
in the IEEE Nuclear and Plasma Society (NPSS) from 1986 to 1989, co-founder of the
IEEE Medical Imaging Conference in 1990, the technical chair for nuclear medical sciences
within IEEE NPSS from 1991 to 1993 and scientific program chair of the 1992 and 1993
IEEE Medical Imaging conferences.

His latest interests were in functional magnetic resonance imaging (MRI) and diffusion
tensor imaging (DTI) tractography with applications of DTI to Alzheimers disease and
traumatic brain injuries. He was founder and director of the neuroimaging core at USC,
which develops new methodology in functional MRI and DTI.

Singh also was founding director of the graduate program in biomedical imaging in
the Department of Biomedical Engineering.

Singh passed away due to unknown causes while visiting family in India in the winter
of 2011. He is survived by his wife, Heidi and their son, Kabir.
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Abstract

The motivation for this work is a vision of widespread adoption of a priori quantita-

tive epidemiological information for clinical decision-making, and can be seen as a

quantitative large-scale extension of evidence-based medicine (EBM) [2]. Medical images

can be seen as a spatially encoded map of physiological measurements that can be used to

predict prognosis and to drive treatment plans. This paradigm can be very powerful and

is driven by the recent big data revolution in computer science as well as the increasing

availability of medical imaging modalities due to decreases in manufacturing costs. In

order to achieve this overarching goal, three practical requirements must be reached and

correspond to the parts of this thesis: Part A: Developing IT infrastructure and technol-

ogy that enables the dataset to be properly collected and organized for analysis. Part B

& C: Generation of functional (Part B) and structural (Part C) medical imaging contrast

that are optimized for analysis. Part D: Pattern recognition techniques (including both

image processing and machine learning techniques) to mine information from the large

imaging datasets generated. As part of the thesis, I discuss my contribution to IT infras-

tructure (Part A) by developing a Short Message Service (SMS)-based system to control

the clinically used Picture Archival and Communication System (PACS) (Ch.2) as well

as an imaging study tool that categorizes patient imaging data for use in retrospective

studies(Ch.3). I then go on to detail my work with functional neuroimaging of obesity

using functional magnetic resonance imaging (fMRI)(Ch.4) and (Ch.5). Chapters 6-9 de-

tails my efforts at studying abnormal aging versus normal aging using diffusion MRI as

well as applications of diffusion MRI to surgical planning. Chapters 10 discusses my work

integrating diffusion MR with FLAIR MRI to investigate the properties of white matter

lesions and how it can be used in the clinical setting. Chapter 11 then moves on to talk

about my work modifying standard brain parcellation techniques to allow them to work

with aged brains with large infarcts. Chapters 6-11 altogether represent my efforts in

structural neuroimaging using MRI (Part C). The thesis then closes with capstone work

in development staging using hand x-rays using fuzzy logic (Ch. 12 & 13). To close the

work with Alzheimer’s Disease (AD) and aging, we used machine learning techniques to

predict disease progression based on a baseline MRI scan as well as higher order analysis of

our diffusion MRI dataset by integrating MRI information with other clinical information

such as neuropsychological tests, cardiovascular status. This is all in an effort to compu-

tationally explore the relationship between MRI measurements and clinical presentation

of disease as measured by neuropsychological scores. Similarly with the Obesity work, we

related fMRI activation differences between high and low calorie foods with non-imaging

information such as insulin resistance (Ch. 16).
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Chapter 1

Introduction

Real knowledge is knowing what you know and what you don’t know. Confucius

1 Motivation

T
he motivation for this work is a vision of widespread adoption of a priori quantita-

tive epidemiological information for clinical decision-making, and can be seen as

a quantitative large-scale extension of evidence-based medicine [2]. Medical Images can

be thought of a structured multi-dimensional form of medical data. The structure comes

from the fact that each voxel or image matrix value is related spatially to neighboring

values and its location in the image matrix has anatomical meaning. Pattern detection /

statistical analysis using this information can exploit not only the measurements or matrix
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values but also their patterns related to matrix indices (i.e. in the hippocampus, certain

cortex region, etc) to predict prognosis and to drive treatment plans. This paradigm can

be very powerful and is driven by the recent big data revolution in computer science: As

data storage prices have plummeted, databases sizes have exponentially increased and

high computational power have become increasingly ubiquitous. Meanwhile, there have

been significant advances in improving the availability of medical imaging modalities as

clinical diagnostic tools. This is mainly due to decreases in manufacturing costs, but also

because physicians have found them to be increasingly useful as screening tools. However,

in order to take advantage of this unique increase in medical data, we also require a rev-

olution in analysis techniques that can handle high dimensionality, multiple comparison

issues as well as the unique challenges that come with medical information and medical

imaging datasets (imaging artifacts, sampling issues, etc).

In order to achieve this overarching goal, three practical requirements must be reached

and correspond to the parts of this thesis:

1. Part A: Development of IT infrastructure and technologies that enables imaging

data to be properly collected and organized for analysis.

2. Part B & C: Generation of functional (Part B) and structural (Part C) medical

imaging contrast that are optimized for analysis.

3. Part D: Pattern recognition techniques (including both image processing and ma-

chine learning techniques) to mine information from the large imaging datasets

generated.

The overarching vision of this thesis is to contribute to building advanced computa-

tional techniques that leverage a priori information to characterize disease progression

2



and to support clinical decision-making. This is important not only in the context of

providing benchmarks for developing treatments but provides a way to understand basic

biological processes.

2 Overview

2.1 Part A: Imaging Informatics

Before being able to leverage advanced computational techniques, we have to address

the basic problem of getting information (in this case medical images) properly classified

and organized. To this end, in chapter 2, we developed a SMS-based routing system

to remotely manage the PACS database. In terms of image classification, the informa-

tion required currently lives on a number of separate databases in the clinic, including

the PACS, Radiology Information System (RIS) and increasingly the Electronic Medi-

cal Record (EMR). Important image meta-information such as the radiologist’s report

as well as patient demographic information lives on the RIS database and the medical

images are stored in the PACS. The two systems are often from different vendors with

limited integration. It is, therefore, difficult to classify images for retrospective studies

and data mining. To compound this problem further, epidemiological information on the

RIS is unstructured and exists in a pure text form as a radiologist’s report. To this end, I

developed a prototype system in chapter 3 that classifies the medical images in the PACS

using extracted structured information from the RIS.

3



2.2 Part B & C: Functional and Structural Neuroimaging

Next we address the quality of the information. In medical imaging, this means generating

high signal to noise ratio (SNR) / low noise images with meaningful contrast. There are

two overall types of magnetic resonance imaging (MRI) contrast: Contrast based on

structure and those based on function. In structural MRI, the system recreates image

matrices that are representations of the object / person. We can take advantage of physical

properties of the magnetic dipoles in the body and alter the pulse sequence parameters

to change how contrast is generated. Functional techniques can be seen as an extension

of structural imaging which require the subject to perform a certain task. The differences

in images acquired during different tasks versus control yield the contrast desired.

Improving sensitivity of the both the functional and structural image contrast allows

us to detect ever smaller variations. In Chapter 4, we were able to take a large number of

data samples and measure small but significant changes in the T2* signal between a control

and a stimulated state. To give you an idea of what changes can be detected in state-of-

the-art medical imaging, the actual change in T2* weighted image/signal intensity is in

the order of 1-3%. With multiple repetition of the same stimulus / presentation paradigm

over time and averaging of this signal, the 1-3% raw signal change can be converted in to

a much more manageable change of about 2-3 standard deviations. This is only possible

because in fMRI, we trade image quality for sensitivity and speed.

The signal changes measured in fMRI are intra-subject. This problem becomes even

more difficult with inter-subject population studies using structural scans such as the

diffusion MR studies in Part C of the thesis. In these studies, it is more important to

have high quality data that has high SNR / low error since it is rare to have 1000s of
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subject scans to decrease our standard deviation sizes. In these cases, the actual signal

deviations are closer to 10% of the raw signal. Therefore, artifact correction techniques

such as Cerebrospinal Fluid (CSF) correction (Chapter 8) as well as proper feature ex-

traction (Chapter 13) can really improve statistical power when doing large group studies.

Moreover, the image intensity differences are ”perceived” very differently by the human

eye versus the computer algorithm. For example, group-wise small signal changes un-

detectable by the human eye can be statistically significant when using large number of

subjects. We demonstrated this with our MR studies comparing Normal Control (NC),

Mild Cognitive Impairment (MCI) and Probable AD subjects (Chapters 6,9,15).

2.3 Part D: Statistical Analysis and Machine Learning

All of these efforts allows us to create images that have high SNR and low noise with

respect to the desired contrast. These contrasts can be functional (Part B) or structural

(Part C) in nature. Once we have good contrast, the problem is to then design methods

that integrate these images with other clinical information so as to better understand the

complex relationship between laboratory diagnostic tests (such as hematological, genetic,

etc), neuropsychological examinations and the images created from the subject. This

work is contained in Part D of the thesis.

In recent years, there have been tremendous increases in the speed and ubiquity of

diagnostic systems, leading to a dramatic surge in the amount of clinical diagnostic infor-

mation, both imaging and non-imaging, available for driving treatment. For example, in

chapters 15 & 16, the studies contained both MRI information as well as large collection

of clinical measures such as neuropsychological scores, cardiovascular status and insulin

response.
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In the clinic, however, physicians are usually able to only consider a select number

of information to make treatment decisions. This is where computational techniques are

useful. By integrating all significant portions of large multi-dimensional datasets, machine

learning and other pattern recognition techniques allows us to find trends and patterns in

large datasets that might gives us an edge on treatment planning. The question is then

how to design meaningful computation techniques of dimension reduction.

One approach is to use pieces of existing information to put a priori constraints on

the analysis. A lot of reasonable assumptions can be made: For example, in Chapter 14,

we assumed that disease progress is gradual and relatively monotonic. Hence, we put a

constraint on expecting our output disease progression measure (in this case, cognitive

ability) to be changing monotonically when sampled at 6 month intervals. In many cases

simpler approaches that such as multivariate permutation testing (Ch. 15) and fuzzy logic

(Ch. 12) are sufficient in accurately doing classification or regression analysis.

Our results are promising, by using fuzzy logic we were able to mimic the pattern

detection work done by pediatric radiologists in matching pediatric hand x-rays to an

atlas to predict the patient’s bone age. At geriatric end of research (Ch. 15), we have

began to be able to isolate the different parts of the brain that correlates with normal

aging, acute insult and long term genetic factors (such as ApoE). In our machine learning

work (Ch. 14), we are beginning to be able to predict disease progression in the next

48 months by using baseline measures from both clinical testing as well as structural

images. Finally, in our childhood obesity work (Ch.16), we were able to link the amount

of difference in brain activation between low and high calorie with insulin resistance,

suggesting that the amount of insulin resistance may play a role in regulating the reward

pathway response to food or vice versa.

6



3 Organization

Project Bone Age Aging & Dementia Obesity PACS

...
...

...
...

...
...

...

Modality X-ray FLAIR DTI T1 fMRI fcMRI PACS

A
Imaging Ch. 2

Informatics Ch. 3

B
Functional Ch. 4

Neuroimaging Ch. 5

C

Ch. 10 Ch. 6 Ch. 11

Structural Ch. 7

Neuroimaging Ch. 8

Ch. 9

D
Statistics & Ch. 12 Ch. 14

M.L. Ch. 13 Ch. 15 Ch. 16

Figure 1.1: Organizational chart for this thesis

This thesis organized into four parts:

1. Imaging Informatics

2. Functional Neuroimaging

3. Structural Neuroimaging

4. Statistical Analysis and Machine Learning in Medical Imaging
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Each part of this thesis outlines my contribution to a particular sub-discipline within

Medical Imaging; Part A outlines my work in improving access to medical imaging infor-

mation by optimizing how digital medical imaging information is transmitted (chapter 2)

and organized (chapter 3), Part B details my contribution to functional Neuroimaging

in particular fMRI in the study of obesity where we applied statistical techniques not

only in the time domain (chapters 4 & 5) but also in the subject group domain (chap-

ter 16). Part C talks about my contribution to structural MRI, it takes the functional

techniques in Part B and applies it to measure inter subject variation (chapter 15. It

also outlines my contribution to Diffusion MRI, in particular, Diffusion Tensor Imaging

(DTI) where I’ve worked on improving image contrast (chapter 8) as well as tractography

(chapter 6,7,9). Lastly, I outline my efforts at looking at white matter hyperintensity

(WMH)s, a characteristic of white matter damage shown in fluid attenuated inversion

recovery (FLAIR) images. Part D demonstrates applications of various machine learning

techniques in capstone applications of automated skeletal age assessment (chapter 12)

and predicting disease progression based on a baseline MRI scan.

These medical imaging methods were applied to three main research areas:

1. Obesity and Reward Pathway Disorders

2. Dementias and Aging

3. Skeletal developmental disorders and Bone Age Assessment.

The fourth area PACS can be seen as creating enabling imaging IT infrastructure for the

three main research areas.
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1 Abstract

Due to the ubiquity of cell phones, SMS (Short Message Service) has become an ideal

means to wirelessly manage a Healthcare environment and in particular PACS (Picture

Archival and Communications System) data. SMS is a flexible and mobile method for

real-time access and control of Healthcare information systems such as HIS (Hospital In-

formation System) or PACS. Unlike conventional wireless access methods, SMS mobility

is not limited by the presence of a WiFi network or any other localized signal. It pro-

vides a simple, reliable yet flexible method to communicate with an information system.

In addition, SMS services are widely available for low costs from cellular phone service

providers and allows for more mobility than other services such as wireless internet. This

paper aims to describe a use case of SMS as a means of remotely communicating with a

PACS server. Remote access to a PACS server and its Query-Retrieve services allows for

a more convenient, flexible and streamlined radiology workflow. Wireless access methods

such as SMS will increase dedicated PACS workstation availability for more specialized

DICOM (Digital Imaging and Communications in Medicine) workflow management. This

implementation will address potential security, performance and cost issues of applying

SMS as part of a healthcare information management system. This is in an effort to de-

sign a wireless communication system with optimal mobility and flexibility at minimum

material and time costs.

Keywords: DICOM, PACS, PDA, SMS, Study Management Tool, Query-Retrieve
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2 Introduction

The paradigm of remotely accessing and controlling Healthcare information via cell phone-

based SMS has yet to be explored. To illustrate the utility of this paradigm, a system

has been designed to perform DICOM Query-Retrieve on a standalone model PACS.

Traditionally, the distribution of PACS images in a standalone model PACS would require

a user performing DICOM Query-Retrieve operations on a free workstation and waiting

for the retrieve operation to complete before being able to view the images. Wireless

devices such as PDAs (Personal Digital Assistant) and cell phone-based SMSs have the

potential to streamline this process by allowing the user to wirelessly command the PACS

to transmit the images to a specified workstation beforehand. [3, 4, 5, 6, 7, 8, 9]These tools

are particularly useful when viewing cases that are not normally pre-fetched automatically.

In order to elicit key features vis-a-vis security, performance and costs, the design of the

aforementioned system has been outlined.

3 Methods and Materials

3.1 System Components

The system can reside on either two separate machines or a single machine. The soft-

ware components are distributed on both the Web Server as well as the Gateway Server

(see Table 1). Both single machine and dual machine configurations were tested. In an

attempt to provide a clear distinction between the Gateway and Web server, the systems

will be treated as two separate entities connected by an https (hypertext transfer protocol

- secure) web link as shown in Figure 1. This design utilizes Kannel Open Source SMS

Gateway as the Gateway Server software. The Gateway Server is serially connected to
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the SMS modem (MultiModem GPRS Wireless Modem from MultiTech Systems, Mounds

View, Minnesota, USA) and communicates via AT commands1. The SMS modem is asso-

ciated with a GSM (Groupe Spcial Mobile or Global System for Mobile Communications)

cell phone account via a SIM (Subscriber Identity Module) card. The phone number of

the cell phone account is used as the server access number. On the Web Server machine, a

Perl capable web server such as Apache is required. The Perl scripts allow the web server

to dynamically create web pages by calling a C++ program that performs the DICOM

communications with the PACS archive.

3.2 Standard Workflow

3.2.1 Component Perspective

The standard workflow illustrated in Figure 1 shows how the different components interact

with each other. The following steps describe the workflow: In step 1, a standard query

will start with the cell phone sending a SMS to the SMS gateway. Steps 2 and 3 shows

the gateway accessing a dynamic Perl-based web page from the Web Server via a build-in

web client, thus passing-on the query parameters indicated by the user to the perform a

DICOM operation. In order to respond back with dynamic data, the Web Server calls a

C++ program to perform a DICOM query with the PACS archive in step 4 and 5. The

data is then passed back to the user through the web page and SMS gateway. Once the

user has found the study of interest, the user can then tell the SMS Gateway to issue a

command down the system (steps 2 to 4) to the C++ program, which can then issue a

DICOM send command with the desired parameters as indicated in step 6.
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Table 2.1: System Components

3.2.2 User’s Perspective

Consider table 2, in a standard workflow the user (1) sends an SMS to the Gateway with

a potential patient name. The system then takes the query from the user and performs

a query based on the criteria sent, generating output (2) in the form of an SMS reply
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Figure 2.1: Component Interaction Diagram

to the user. To browse the potential matches to the initial query, the user can send two

commands n for next page, which sends a request to the gateway to send an SMS with the

next set of possible matches, or b to send a query to the gateway to resend the previous

choices. In the example, the user does not see the desired patient in the first 4 results

and sends n to get the next set of results (see step 3). In (4) , the server returns the next

group of results. When the user finds the desired patient Doe, Joe ID number X8787224,

the user then sends 8 to select the desired patient (step 5). The server returns the studies

associated with patient Doe, Joe together with the examination date. In this case, the

server returns two Thorax CTs with its respective date of examination in brackets. Since

the user is looking for the examination performed in 1998 and therefore it is appropriate

to send the associated index number 2 (step 7). The user is then presented with a list

of destinations and as in the previous menu, chooses the desired destination by sending
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the number 1 for the EFILM workstation 1 in examination room 1 (step 9). The system

has recorded all of the users choices in its cache and sends the appropriate DICOM send

command to the PACS archive (see number 5 in figure 1 or section 2.2.1). To confirm that

the command has been sent successfully, the SMS gateway responds with a confirmation

SMS in step 10. The system is now ready to accept a new query and has cleared the users

cache of the previous data.

3.2.3 Background Processes

To be able to perform a full DICOM-query and direct a specified study to a destination

via DICOM send, the state of the user must be tracked. In other words, the server must

be able to track the input associated with user so as to give the user the appropriate

options to choose from. This process is necessary because no session is kept on the user.

The users choices and data is stored in the users cache which is associated with the users

cell phone number as detected by caller ID. The users state is indicated by the state

diagram (see figure 2), the cache is updated every time the user state changes. Each row

of table 2 is associated with a single state indicated by a number in figure 2. The arrows

shows how the user moves from one state to another. For example, to move from state

1 to state 2, the user has to send a patient name. From state 2 to 3, the user sends a

number that associated the desired patient. The user is also able to send another Name

or patient name while in the patient state, which will elicit another list of possible patient

matches as seen in output 2 in table 2.
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Table 2.2: Sample User - Server Interaction: Send Patient Doe, Joe (Patient ID:
X8787224)s Chest CT from February 1998 to EFILM workstation in Exam Room 1.

3.2.4 Other Features

To allow the user to return to the new query menu at anytime, there is a special command

0 that resets the system back to its initial state should the user make any mistakes and

17



wishes to start over. Other feathers include prefixing the initial query with ID: allowing

the user to query by patient ID (see figure 2).

Figure 2.2: The System State diagram shows how the system keeps track of the users
selections. This state tracking system allows the user to use the simplistic SMS text-
based interface to select the study of interest from the patient of interest to be sent to a
designated DICOM node.

4 Results and Discussion

4.1 SMS System Architecture vis-a-vis PDA System Architecture

The SMS system adds the advantage of being able to direct DICOM studies in the PACS

archive without being requiring internet or local area network access. The only limitation

is a cellular phone carrier signal. It works off the same web server architecture as the

PDA system. [9] Therefore, the Web Server for the SMS is identical to the PDA server
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except that the generated output is now modified for the SMS, with added functionality

to read from a users state tracking mechanism that allows for navigation between the

different states (see Figure 2). The limitation of the SMS is that it lacks the previewing

capability on the web browser as on the PDA system.

Figure 2.3: The SMS System Architecture is a powerful extension of the existing PDA
System Architecture, allowing any authorized user with a cellular phone to direct DICOM
images within the Hospital network.

4.2 System Performance

The average turn around time for a SMS command and a reply from the gateway was

measured to be 15-20 seconds. However, users noted that turn-around time depended

on cellular network congestion. Therefore, the navigation through the three states is
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on the order of 2-3 minutes provided that the query does not yield too many possible

matches. The system was tested with the PDA server and SMS gateway server on the

same machine.

4.3 System Security

If the SMS gateway needs to be in a separate machine its communication with the PDA

server is via https, a secure protocol. The SMS gateway only allows queries of 3 types of

information: Patient Name, Patient ID and Study Information. This ensures that minimal

patient demographic information can be extracted from the PACS archive. Moreover, the

SMS gateway does not allow transfer of images outside of the pre-designated list of access-

protected destinations. The system can also allow or disallow user-access based on the

users phone number.

4.4 User Preferences

Since the users states are tracked internally, the system allows the administrator to set

user preferences such as authorized destinations. Other possible user-based preferences

could include user customized filters during searches, or a preference to search only by

Patient ID.

4.5 Interface Usability

Referring to Table 2 above, it shows the complete workflow to perform a retrieve on a

study. The user only has to enter a number at each step following the initial query by

patient name. The only latency in the system is waiting for the server reply, which is about

15 seconds depending on cellular phone network congestion. For a large PACS archive,
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the screen size and limited number of characters of the SMS protocol becomes a severe

limitation when querying with common last or first names only. One way to overcome

this problem is to use query by patient ID. Otherwise, the system is user friendly and

requires simple inputs of numbers to make necessary choices.

4.6 System Component and Operation Costs

The system runs autonomously after setup and therefore should require minimal main-

tenance. Since the system can be run from a single machine, the hardware costs are

relatively low. Moreover, the scripts and web server does not put a heavy load on the

CPU or RAM, therefore the minimum hardware requirements are sufficient. The cost

of the modem is also relatively low at about USD $300. Thus, the main burden lies in

the cellular phone subscription plans. Most normal cellular phone plans can be used and

usually gives 3000 SMS and 5 cents for each additional SMS received and transmitted a

month for about USD $60.00. However, large hospitals may consider a fixed rate plan

with a cellular provider due to their high volume.

5 Conclusions and Future Work

5.1 Future Work

5.1.1 User Authentication

An additional authentication step is required to ensure proper access protection to the

SMS system. This can be easily implemented as extra user authentication state (see figure

2). The user will send an SMS with a password that will be authenticated against the

origin (user) phone number.
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5.1.2 Hospital Information System (HIS) / Laboratory Information System

Applications (LIS)

Potential other use cases of such a system could include retrieving patient data from HIS

and LIS, provided ways of circumventing HIPAA requirements are found.

5.1.3 Multimedia Capabilities

With the advent of 3G (Third Generation) cellular technologies such as video streaming

and higher bandwidth data connections with cellular networks, it is possible that DICOM

images can also be relayed in the same manner as the SMS messages through the use of

MMS or Multimedia Messaging Service. One of the destinations in our system could be

to the users cellular phone. This would enable the user to see images on the cellular phone

display. Possibilities of features such as Window / Level and Zoom / Pan are possible

but may be limited by the processing power of the cellular phone. Display resolution is

another concern that needs to be addressed.

5.2 Conclusions

The SMS protocol provides an easy and simple way to deploy an application that can

manage the DICOM workflow without being constrained by networking requirements. It

complements the PDA technology by providing the user with a simpler interface with less

network and bandwidth requirements. This paper shows that although SMS is a text-only

communication tool, it can allow a user to perform tasks on a PACS network wirelessly.

What remains is to see how receptive physicians and technologists are to such a method

of streamlining their workflow. However, certain tasks and workflow scenarios will lend
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itself more to SMS-based wireless control. For example, tasks such as CD burning of

studies through a CD burning DICOM node would be well suited for this system.

SMS-based management of PACS workflow is only one potential application of this sys-

tem. There are potentially a large variety of use cases for SMS in healthcare information

management. Certainly, text-based laboratory information could easily be transmitted

over SMS. Application of MMS to transmit images may open up greater possibilities in

the realm of image-based information.

23



Chapter 3

RadSearch: A RIS/PACS Integrated Query Tool

Sinchai Tsaoa, Jorge Documeta, Paymann Moina, Kevin Wanga, Brent J. Liua

a Image Processing and Informatics Lab, Department of Radiology, ISI/USC,
Marina Del Rey, CA USA 90292;

Medical Imaging 2008: PACS and Imaging Informatics, edited by Katherine P. Andriole,
Khan M. Siddiqui, Proc. of SPIE Vol. 6919, 691909, (2008) 1605-7422/08/$18 doi:
10.1117/12.772983

24



1 Abstract

Radiology Information Systems (RIS) contain a wealth of information that can be used

for research, education, and practice management. However, the sheer amount of infor-

mation available makes querying specific data difficult and time consuming. Previous

work has shown that a clinical RIS database and its RIS text reports can be extracted,

duplicated and indexed for searches while complying with HIPAA and IRB requirements.

This projects intent is to provide a software tool, the RadSearch Toolkit, to allow intelli-

gent indexing and parsing of RIS reports for easy yet powerful searches. In addition, the

project aims to seamlessly query and retrieve associated images from the Picture Archiv-

ing and Communication System (PACS) in situations where an integrated RIS/PACS

is in place – even subselecting individual series, such as in an MRI study. RadSearchs

application of simple text parsing techniques to index text-based radiology reports will

allow the search engine to quickly return relevant results. -This powerful combination

will be useful in both private practice and academic settings; administrators can easily

obtain complex practice management information such as referral patterns; researchers

can conduct retrospective studies with specific, multiple criteria; teaching institutions can

quickly and effectively create thorough teaching files.

Keywords: NLP, PACS, RIS, Data Mining, Radiology, Radiology Reports

2 Introduction

2.1 Previous Work

Previous work has shown that a RIS database can be searched and radiology report text

can be parsed and indexed. Desjardins and Hamilton showed that radiology reports can be
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extracted and indexed with minimal disturbance of the clinical workflow while complying

with HIPAA and IRB requirements. Current trends in improving standards in Radiology

Reporting as well as current practices of report voice recognition dictation using standard

templates demonstrate predictability in the location of information within the format of

the radiology report. Classification tools such as Index Medicus (IM), Medical Subject

Headings (MeSH), International Classification of Disease (ICD), Systematized Nomencla-

ture of Medicine (SNOMED), Unified Medical Language System (UMLS) and RadLex

are built to classify large volumes of medical literature for easy searching. RadSearchs

end goal is to apply the same concept to Radiology Reports within the RIS.

2.2 RadSearch Toolkit

The toolkit builds upon current functionalities in previous work by (1) parsing the radiol-

ogy report intelligently into multiple clinically relevant subsections (2) linking the search

results to PACS studies. This will enable administrative users of the toolkit to track refer-

ral patterns, perform receiver operating characteristic (ROC) analysis, and track billing

codes for studies. The toolkit also allows researchers to easily perform large, complex

retrospective PACS-based studies by querying for one or more study indications, find-

ings, impressions, diagnostic codes or any other indexed criteria. Finally, the RadSearch

toolkit allows educators to easily compile interesting cases and quickly assemble teaching

files. In short, RadSearch will enhance radiological informatics support for three main

groups: Administrators, Researchers, and Educators.
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Figure 3.1: Prototype Database Schema

3 Methods

3.1 Natural Language Processing (NLP) -based Approaches

There have been numerous approaches to the data mining Radiology Text information in

the RIS database. Taira et al. , Friedman et al. as well as other groups have approached

the problem by classification for the specific type of Radiology Reports such as Chest X-

rays or Mammograms using Natural Language Processing Techniques. Leximer, a NLP

engine at Massachusetts General Hospital, went further to describe referral trends by

classifying pathological findings. Nuance Inc. the company behind Leximer, also offers

applies similar techniques to improve billing by NLP-based classification of billing codes.

However, there have yet to be a tool that allow for generalized searches of the RIS database

for teaching file generation or retrospective studies that also have PACS integrated image

retrieval.
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Figure 3.2: Overall System Diagram

3.2 Lexicons and Synonymity

Current work have also concentrated in including synonymity and uniformity to searches

of Medical Literature (Journals and other publications) using thesauruses such as Unified

Medical Language System or Radiological Society of North America (RSNA)s RadLex

(Radiology Lexicon) for Radiology. These lexicons can just as easily be employed in

Radiology Report searches and can be achieved in two ways. (1) Using the lexicons as a

pure thesaurus, therefore searching of one specific term will search for all related terms.

(2) Pre-Classification of the text with specific unified key terms for specific sub-headings

and convert all queries to use those key terms. The later approach has advantages with

increased search speed and accuracy since the text data can be indexed using those key

terms.
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3.3 RIS/PACS Integration

Integrated PACS/RIS solutions have shown that it is possible to link RIS radiology reports

back to PACS image series using the Series Instance UID portion of the RIS radiology

report table. However, none of the current tools allow RIS data mining techniques with

PACS integration.

4 Results

4.1 System Architecture

The system is developed utilizing a SUSE linux box running a postgreSQL database as

well as an Apache web server with PHP enabled. It employs current PHP scripting

technology to perform database manipulations as well as to display results via a web

interface. Advantages to using this architecture is that server-side scripting languages

such as PHP do not require a compilation step and have an easy to use interface with

html for displaying results on the web. PACS connections will be run using the open-

source DCMTK toolkit executables called by PHP scripts.

4.2 Radiology Text Report Parsing

The current system has links from the RIS database to a text file that contains the

Radiology reports. Our goal is to breakdown the RIS text into broad fields such as:

Study Title, Location, Indications, Findings, Technique and Impressions. We can then

index the database based on these subsections. This allows the users to make more

precise searches based on the aforementioned fields. An initial parsing algorithm employs

a simple method of detecting each of the subtitles and parsing the text into each of
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the subsections. Subsections not detected is left null. The detected values are then

populated into the database and indexed for expedited searching. The PHP scripts will

handle both the retrieval of the text file containing the Radiology Text report, parsing, as

well as population back into the database using the proposed schema in figure 1. Future

advanced Natural Language Processing algorithms can be applied to enhance and improve

the parsing step further and, thus improve the overall performance of the toolkit.

4.3 Forming Queries

Queries to the system is formed by specifying key terms for each of the subfields indicated

in figure 1. This can include patient demographic data as well as information contained

within the Radiology Report. The results will then be returned in the form of a list of

Radiology Reports that matched that query along with links to related images.

4.4 Integration with PACS and as a Study Management Tool (SMT)

RadSearch builds upon our current real time patient dashboard [10], which tracks the

status of current patients wait time and status within the radiology workflow. It warns

clinicians and technicians if the patient has been waiting a long time or if the study hasnt

been read after a certain duration past study completion. The patient dashboard does

this via its real ime connection with the clinical RIS database and understanding of how

and when the RIS database is updated throughout the workflow. RadSearch, therefore,

builds upon this understanding to construct a query tool for the same set of database

information. Data mining for the patient wait times, time from study completion to

reading by a radiologist and other matrices is also possible since it resides on the same

database system. PACS integration comes in when the user decides to view images related
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to the desired Radiology Report. PACS images are query-retrieved and displayed in a

presentation state (JPEG) as specified in the DICOM convention for WADO (Web Access

for DICOM Objects). The system can also function as a study management tool that

allows the images to be moved via DICOM standards to other DICOM nodes for CD

burning, display on a PACS workstation, etc. This is done via the Series Instance UID

attached to the desired Radiology Report. The Series Instance UID allows the RadSearch

server to query-retrieve all series images from the PACS for the user or initiate a DICOM

C-MOVE to move images to another DICOM node.

4.5 System Operation Considerations

To minimize disruption of the clinical RIS system, the system database is duplicated

to a postgres SQL database on the RadSearch Server. The system will have weekly

duplication sessions during non-peak times such as Sunday nights. PACS connections

and query-retrieval will be based on an as-needed basis and should not effect the current

clinical operations of the PACS system. Early uses of the system are limited to teaching

file generation. IRB approval for use as a retrospective clinical research tool will be

implemented when the system has been tested for reliability. User authentication as well

as usage logging is also implemented to ensure HIPAA and IRB compliance.

5 Discussion

5.1 RadSearch versus other RIS Data Mining Approaches

RadSearchs approach differs from the other approaches in two folds (1) RadSearch includes

PACS integration (2) RadSearch allows for higher specificity in the Radiology Report by
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parsing the report into subsections. PACS integration is essential as it allows the user to

preview the desired images on the same interface as the RIS search engine. Previously, the

user would have to obtain the patient name or ID from the search interface and search for

it within the PACS via a PACS workstation before being able to determine if those images

are what the user is looking for. With PACS integration, RadSearch will allow the user

to seamlessly preview the images together with the list of potential Radiology Reports.

Ability to search within specific fields is also important, as the appearance of a term in one

subsection of the report may have different meaning than if it appeared within another

subsection. Therefore, this ability to search within subsections will improve specificity,

accuracy and quality of the user query.

5.2 Future Work

We intend RadSearch to be a platform for future work. The next obvious step is to use

a Lexicon to build a classification engine so as to allow for synonimity in searching. We

plan to integrate the RadLex lexicon system, since it is build specifically for Radiology.

Other possibilities include classification of findings, techniques and indications in the

examinations to allow for statistical data mining.
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Functional Neuroimaging
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1 Abstract

The factors behind the neural mechanisms that motivate food choice and obesity are not

well known [31, 32]. Furthermore, it is not known when these neural mechanisms develop

and how they are influenced by both genetic and environmental factors. This study uses

fMRI together with clinical data to shed light on the aforementioned questions by inves-

tigating how appetite-related activation in the brain changes with low versus high caloric

foods in pre-pubescent girls. Previous studies have shown that obese adults have less

striatal D2 receptors and thus reduced Dopamine (DA) signaling leading to the reward-

deficit theory of obesity[33, 34]. However, overeating in itself reduces D2 receptor density,

D2 sensitivity and thus reward sensitivity. The results of this study will show how early

these neural mechanisms develop and what effect the drastic endocrinological changes

during puberty has on these mechanisms. Our preliminary results showed increased acti-

vations in the Putamen, Insula, Thalamus and Hippocampus when looking at activations

where High Calorie > Low Calorie. When comparing High Calorie > Control and Low

Calorie > Control, the High > Control test showed increased significant activation in the

frontal lobe. The Low > Control also yielded significant activation in the Left and Right

Fusiform Gyrus, which did not appear in the High > Control test. These results indicate

that the reward pathway activations previously shown in post-puberty and adults are

present in pre-pubescent teens. These results may suggest that some of the preferential

neural mechanisms of reward are already present pre-puberty.

Keywords: fMRI, MRI, Obesity, Reward Pathway, Food, Dopamine
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2 Introduction

The factors behind the neural mechanisms that motivate food choice and obesity are

not well known [31, 32]. Furthermore, it is not known when these neural mechanisms

develop and how they are influenced by both genetic and environmental factors. This

study uses fMRI together with clinical data to shed light on the aforementioned questions

by investigating how appetite-related activation in the brain changes with low versus

high caloric foods in pre-pubescent girls. Previous studies have shown that obese adults

have less striatal D2 receptors and thus reduced Dopamine (DA) signaling leading to the

reward-deficit theory of obesity[33, 34]. However, overeating in itself reduces D2 receptor

density, D2 sensitivity and thus reward sensitivity. Moreover, Killgore et al’s studies have

shown that affective also effects the stratal activation in the brain [35, 33], suggesting that

a numerous temporary inputs and more permanent factors such as body weight [36, 37, 38]

could modulate the reward center. In this study we aim to use this fMRI techniques to

measure differential activations due to the visual presentation of High Calorie (HC) and

Low Calorie (LC) foods to prepubescent children. The motivation was to investigate

these responses in the youngest population possible before factors like decreased Insulin

Sensitivity sets in. The hope is that differences found will be due to responses that

is affecting their obese status and not secondary to the adiposity. Furthermore, the

presence of these differential responses in the pre-pubescent populations and investigation

of potential treatment or weight management techniques will allow us to find out whether

the endocrinological changes during puberty solidifies the pathology in terms of neural

pathways and responses.
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3.2 Procedures

This study was approved by the University of Southern California IRB committee. After

informed consent by the subject and their parents, the subjects were required to partici-

pate in two separate visits. The first visit was for anthropometric and body composition

measurements followed by an overnight stay and a Frequently Sampled Intravenous Glu-

cose Tolerance Test (FSIVGTT). The second visit was for the neuroimaging study outlined

in the next section. A pediatric health care provider conducted a medical history and

physical examination together with a determination of maturation using the citeria of

Tanner [39]. Body composition for all subjects was measured with dual-energy x-ray ab-

sorptiometry (DXA) using a Hologic Discovery A model (82702, Hologic, Bedford, MA).

3.3 MRI Protocol

An fMRI study ( TR= 3000 ms, TE = 25 ms, Slice Thickness = 5 mm, Number of Slices

= 33, Acquisition Matrix = 64 x 64, Voxel Size = 3.4375 x 3.4375) was performed on each

participant and consisted of presenting sets of 10 randomized images of High Calorie (HC)

Foods, Low Calorie (LC) Foods and Control Non-Food (NF) Images. The visual stimulus

was presented using the PsychToolbox for MATLAB [40] to ensure accurate timing. The

visual stimulus was an alternating set of NF, HC, NF, LC, NF images (Figure ??). Each

group of images were randomized to make sure that the results were not due to the effect

of any single image but the average of the set as a whole. Anatomical images using T1

FSE and FSPGR sequences were also acquired. All data was acquired on a GE 3T HDxT

scanner located at University of Southern Californias Health Consultation Center II.
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3.4 SPM Post-processing

SPM8 was used to process the fMRI data. The data was first motion corrected then

co-registered to it’s corresponding T1-weighted FSPGR image. The T1-weighted FSPGR

images are then normalized to an MNI template. This transformation was then applied

to the motion-corrected fMRI images. The ROIs were extracted using the Anatomical

Labeling Toolkit for SPM [1] .

Table 4.1: Results when comparing High Calorie > Control ordered by z score with
Talairach Atlas Coordinates and the Automatic Labeling of the ROIs was done using
AAL toolkit for SPM [1]

Regions of Activation x y z z score

L. Cerebelum Crus I -26 -88 -26 3.33

L. Fusiform -42 -50 -18 3.27

R. Frontal Middle 32 50 32 3.07

L. Fusiform -38 -68 -16 3.02

L. Cerebelum Crus I -46 -76 -22 3.02

L. Occipital Middle -30 -84 6 2.99

R. Fusiform 28 -68 -8 2.59

4 Results

Our preliminary results showed increased activations in the Putamen, Insula, Thalamus

and Hippocampus when looking at activations where High Calorie > Low Calorie. When

comparing High Calorie > Control and Low Calorie > Control, the High > Control test
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Table 4.2: Results when comparing Low Calorie > Control ordered by z score with Ta-
lairach Atlas Coordinates and the Automatic Labeling of the ROIs was done using AAL
toolkit for SPM [1]

Regions of Activation x y z z score

L. Frontal Superior -22 22 54 3.57

R. Frontal Superior 14 28 54 3.16

R. Cerebellum Crus I 24 -84 -24 2.92

R. Frontal Middle 30 14 54 2.80

L. Cerebelum Crus I -16 -86 -28 2.73

L. Occipital Inferior -50 -78 -12 2.55

showed increased significant activation in the frontal lobe. The Low > Control also yielded

significant activation in the Left and Right Fusiform Gyrus, which did not appear in the

High > Control test.

5 Discussion

Our preliminary results show that the differential activations detected by numerous pre-

vious studies [41] are also present in children. This is important because the end goal

of the study is to determine how factors such as Insulin Sensitivity, Fasting Insulin lev-

els and Body Composition are driving forces behind the development of obesity. Obese

adults tend to have a low range of insulin sensitivity and therefore make investigating

the relationship between brain reward and insulin sensitivity difficult. However, with

obese children they still retain a large range of insulin sensitivity [42]. The hypothesis
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is that insulin as a neurotransmitter plays a crucial role in regulating the reward centers

in the brain and therefore a loss in insulin sensitivity will cause subjects to be unable to

manage visual food stimulus appropriately. In other words, the loss of insulin sensitivity

means that the patient will be unable to temper food stimulus appropriately leading to

overeating and obesity. Previous work has shown to be consistent with this hypothesis

[42, 43, 44, 45]. Most of the insulin receptors in the brain lie within the limbic region,

our preliminary results show that a differential in activation occurs when the subjects are

stimulated with high versus low calorie foods lie within the limbic regions (see Table 4.3).

This coupled with preliminary clinical data indicating that our subjects have a wide range

of insulin sensitivity suggests that it may be possible to correlated the degree of differen-

tial activation with each subject’s insulin sensitivity. Furthermore, our study also collects

body adiposity measurements, which have been known to be a factor in insulin resistance.

Our current hypothesis suggests that insulin sensitivity may be an earlier precursor to

body adiposity due to it’s neurotransmitter role in the limbic system. This hypothesis

can be tested by carefully controlling for body adiposity in our study thus showing that

perhaps insulin sensitivity and not body adiposity is the culprit in mis-regulation of visual

food stimulus in the obese.

6 Conclusion

Our study shows how we are able to extend traditional fMRI studies to investigate patho-

logical neurological pathways in the obese. This example simply shows that if clinical

parameters such as insulin sensitivity and adiposity can be incorporated into fMRI image

analysis, a large range of clinical hypothesis can be tested. This study outlines the initial
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steps of this type of analysis. These initial steps are important in establishing that the

responses that we are correlating are indeed in areas that are related to the pathway in

question. In our case, multiple parts of the limbic region and other brain reward areas

were found to be significant in our High > Low Calorie analysis. These regions did not

appear to be significant in our High > Control and Low > Control comparisons indicating

that these regions are indeed involved only in differentiating between low and high visual

food stimulus [41].

This paradigm of combining traditional clinical studies of pathologies such as obesity

with fMRI techniques have traditional used only for primary neuroscience research but

can easily be applied to a variety of disorders, obvious targets include Alzheimer Disease

and Mildly Cognitively Impaired. Other applications include relating the change in fMRI

activity with therapeutic outcomes and treatments.
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Table 4.3: Results when comparing High Calorie > Low Calorie ordered by z score with
Talairach Atlas Coordinates and the Automatic Labeling of the ROIs was done using
AAL toolkit for SPM [1]

Regions of Activation x y z z score

R. Temporal Superior 60 -52 24 3.24

R. Frontal Middle 46 18 34 3.11

L. Frontal Medial Orbital -6 50 -4 3.09

R. Frontal Superior 28 32 48 3.05

L. Frontal Middle -24 6 48 3.01

L. Precentral / Postcentral -30 32 62 2.89

L. Frontal Middle -24 32 42 2.88

R. Hippocampus / R. Thalamus 18 -36 6 2.85

L. Frontal Middle / Superior -20 20 52 2.82

R. Temporal Superior 58 -18 -2 2.77

R. Putamen / R. Insula 32 -20 0 2.74

Caudate 0 14 -2 2.73

L. Frontal Inferior Opercularis / Middle -48 16 34 2.63

R. Frontal Middle 30 18 54 2.48
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Differences in Appetite-Related Brain Activity with High and Low Calorie Food in Pre-Pubescent Girls 
S. Tsao1, T. Adam1, D. H. Hwang1, M. I. Goran1, and M. Singh1 
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Introduction: The factors behind the neural mechanisms that motivate food choice and obesity are not well known. 
Furthermore, it is not known when these neural mechanisms develop and how they are influence by both genetic and 
environmental factors. This study uses fMRI together with clinical data to shed light on the aforementioned questions by 
investigating how appetite-related activation in the brain changes with low versus high caloric foods in pre-pubescent girls. 
Previous studies have shown that obese humans have less striatal D2 receptors and thus reduced Dopamine (DA) signaling 
leading to the reward-deficity theory of obesity. However, 
overeating reduces D2 receptor density, D2 sensitivity and thus 
reward sensitivity. The results of this study will show how early 
these neural mechanisms develop and what effect the drastic 
endocrinological changes during puberty has on these mechanisms. 
Materials and Methods: 13 obese girls between the ages of 8 and 
11 were selected to participate in the study. An fMRI study was 
performed on each participant and consisted of presenting sets of 10 
randomized images of High Calorie (HC) Foods, Low Calorie (LC) 
Foods and Control Non-Food Images. Each participant’s percentage 
body fat was also measured along with body height & weight, hip 
and waist circumference, Intravenous Glucose Tolerance Test 
results (IVGTT), Body Mass Index (BMI), Tanner Stage as well as 
Resting Heart Rate.  
 
Results and Discussion: Our preliminary results showed  increased 
activations in the Putamen, Insula, Thalamus and Hippocampus 
when looking at activations where High Calorie > Low Calorie. 
When comparing High Calorie > Control and Low   Calorie > 
Control, the High > Control test showed increased significant 
activation in the  frontal lobe. The Low > Control also yielded 
significant activation in the Left and Right Fusiform Gyrus, which 

did not appear in the  High > Control test. 
Conclusions:  Our preliminary results show that the  

reward pathway activations previously shown in post-puberty and  adults are  
present in pre-pubescent teens. These results may suggest that the some of the 
preferential neural mechanisms of reward are already present pre-puberty. We 
hope that  by correlating our lab results such as IGVTT with the degree of neural 
activation in our SPMs we can  see which regions of the pre-pubescent brain  
have been affected by obesity related physiological factors such as insulin 
resistance. 

Figure 1. Group statistical parametric map (SPM) 
comparison of activated areas during presentation 
of Low Calorie, High Calorie and Control Images 
(P<0.01, uncorrected) with an extent threshold of 10 
Voxels. The SPMs are presented in two ways 
(LEFT) Rendered onto a single subject’s brain 
(RIGHT) Maximum Intesity Projections (MIP) in 
three views.

For Tables Note: 
L. Left Hemisphere  
R. Right Hemisphere. 
Atlas coordinates x, y,z 
in mm are from the 
Talairach and 
Tournoux (1988) Atlas. 
Only regions with z 
score significant 
beyond P<0.01 
(Uncorrected are 
shown) 

Table 1. High Calorie > Control

Table 2. Low Calorie > Control 

Table 3. High Calorie > Low Calorie

Figure 4.2: Group statistical parametric map (SPM) comparison of activated areas during
presentation of Low Calorie, High Calorie and Control Images (P < 0.01, uncorrected)
with an extent threshold of 10 Voxels. The ROIs are rendered on to a template single
subject’s brain surface.
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1 Abstract

A novel MRI protocol has been developed to investigate the differential effects of glucose

or fructose consumption on whole-brain functional brain connectivity. A previous study

has reported a decrease in the fMRI blood oxygen level dependent (BOLD) signal of the

hypothalamus following glucose ingestion, but due to technical limitations, was restricted

to a single slice covering the hypothalamus, and thus unable to detect whole-brain con-

nectivity. In another previous study, a protocol was devised to acquire whole-brain fMRI

data following food intake, but only after restricting image acquisition to an MR sam-

pling or repetition time (TR) of 20s, making the protocol unsuitable to detect functional

connectivity above 0.025Hz. We have successfully implemented a continuous 36-min, 40

contiguous slices, whole-brain BOLD acquisition protocol on a 3T scanner with TR=4.5s

to ensure detection of up to 0.1Hz frequencies for whole-brain functional connectivity anal-

ysis. Human data were acquired first with ingestion of water only, followed by a glucose or

fructose drink within the scanner, without interrupting the scanning. Whole-brain con-

nectivity was analyzed using standard correlation methodology in the 0.01-0.1 Hz range.

The correlation coefficient differences between fructose and glucose ingestion among tar-

geted regions were converted to t-scores using the water-only correlation coefficients as

a null condition. Results show a dramatic increase in the hypothalamic connectivity to

the hippocampus, amygdala, insula, caudate and the nucleus accumben for fructose over

glucose. As these regions are known to be key components of the feeding and reward

brain circuits, these results suggest a preference for fructose ingestion.

Keywords: MRI, fMRI, Functional Connectivity, Glucose, Fructose, Obesity, Insulin,

Hypothalamus
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2 Introduction

The main objective of these pilot studies was to develop a MRI protocol and conduct

initial evaluation studies of the differential effects of glucose and fructose ingestion on

the feeding pathways in normal (healthy) and obese adults. By identifying brain regions

that show differential activity across normal and obese subjects following glucose or fruc-

tose ingestion, we hope that the data will permit new understandings of the effects of

glucose/fructose ingestion and their implication in obesity. Recent published research

[46, 47, 48, 49] has shown that glucose ingestion in healthy humans leads to a decrease in

hypothalamic nuclei activity and consequently a decrease in the fMRI blood oxygen level

dependent (BOLD) signal. Furthermore, it has been shown that glucose ingestion fails

to inhibit hypothalamic nuclei activity in patients with type 2 diabetes[50]. These scans

typically require continuous acquisition of fMRI data for a period of about 30-45 minutes,

and due to MRI technical limitations, previous research in this area has been restricted

to acquisition of fMRI data from a single mid-sagittal slice, covering only the hypothala-

mus. A fundamental difference in our proposed studies was to design a protocol to obtain

fMRI sampling over the entire brain, permitting the detection of glucose/fructose related

changes throughout the brain. A successful protocol would then enable us to conduct an

analysis of whole-brain functional connectivity following glucose/fructose ingestion. To

our knowledge, no such connectivity analysis has been reported previously by any group.

Thus, development of a MRI scan protocol for this project, which presents many key

technological challenges, was considered an essential first step.
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Figure 5.1: Three blood samples are taken during the experiment to track the subjects
blood sugar level. The sequence of the individual scans, and times at which blood-
sampling occurs, are indicated in the figure above.

3 Methods

3.1 Subjects

This protocol was tested with 4 Hispanic subjects between the ages of 15-25 who have no

history of diabetes.

3.2 Protocol Development

The challenge was to develop a whole-brain fMRI protocol with continuous data ac-

quisition for approximately 45 minutes that would include a baseline, a relatively long

post-glucose/fructose ingestion period, and a short time for ingesting the glucose/fructose

during the scan. Typically a TR of 2 seconds is used in fMRI connectivity studies and

for TR=2s, continuous acquisition of 4mm thick images covering the whole brain would

require a time-series of 40,500 images. As such long time-series have never been reported

before in fMRI and are not allowed by hardware constraints of many scanners, we did sev-

eral developmental scans to push the technical limits of the USC GE 3T MRI to increase
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the number of images that could be acquired in a continuous time-series. It was found

that our 3T system could acquire at most 20,000 images continuously before exhausting

its current memory capabilities. However during some developmental scans, the gradients

overheated and the scans had to be terminated.

We argued that as glucose/fructose were diluted in water during ingestion, it would

be important to add a baseline study corresponding to ingestion of water only, so that

confounding effects of water could be separated from those attributed to sugar ingestion.

We conducted several developmental studies to assess the fMRI signals acquired with

water ingestion only and those after ingestion of a sugar drink and came to the conclusion

that because all images must be acquired continuously (stopping and restarting a scan is

not an option as it changes many parameters including the baseline making an accurate

analysis virtually impossible) it was essential to acquire data from a water only period

prior to sugar ingestion in the same continuous scan. Incorporating these requirements,

we came up with our final 36 min fMRI protocol during which the subject first drinks

pure water, followed by 10 min of data acquisition, then drinks water containing glucose

(or fructose), followed by about 24 min of data acquisition. Thus the fMRI scan was

divided into three regions: a 10 min baseline condition before ingestion of the sugar

drink; drink period of 2-4 min; and lastly 22-24 min of post-drink data (see Figure ??).

After several trials, the repetition time (TR) of the fMRI scan was chosen to be 4.5s. This

TR is short enough for adequate temporal filtering of the data for functional connectivity

analysis, and long enough to enable us to acquire data continuously for 36 min for a total

of approximately 19,000 fMRI images. As additional images and time are required for

anatomical and diffusion tensor imaging (DTI) analysis, 36 minutes were considered as

close to the upper limit for the fMRI portion to finish the entire scan in about one hour.

50



Immediately following the fMRI acquisition, an anatomical T1-weighted scan is ac-

quired to enable registration of subject fMRI data to an anatomical reference template.

This is followed by another higher-resolution (SPGR) anatomical scan that is extensively

used to spatially normalize images and delineate small anatomical regions of interest such

as the hypothalamus.

Following the anatomical scans a diffusion-weighted data set is obtained in accordance

with a standard DTI protocol that we have implemented on this GE scanner. This data

may be used to investigate structural connectivity differences between normal (healthy)

and obese subjects.

3.3 Data Processing and Analysis of fMRI Baseline Trends

As subjects are bound to move their heads during a relatively long scan and certainly

during the drinking period, the first step in processing is to correct the fMRI time-series

for head-movements. Each subjects’ fMRI data is motion-corrected to the last acquired

head-volume, registered to the individuals’ high-resolution SPGR anatomical scan, and

warped to normalized space through non-linear mapping techniques. The Colin Brain

template [51] in Talairach Tournoux coordinates was used to define normalized space in

this study though other templates such as the SPM MNI template could also be used.

Regions of Interest (ROIs) are derived from the San Antonio Talairach Daemon [52, 53],

which is also in the Talairach-Tournoux normalized space.

3.4 Connectivity Analysis

Whole-brain connectivity was analyzed using a standard technique where the movement

and slice-timing corrected fMRI data are band-pass filtered (0.01 0.10 Hz), a seed region
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is selected and then the time courses of all voxels throughout the brain volume are corre-

lated to the time-course of the seed region to obtain a measure of functional connectivity.

An alternative approach is to first define ROIs based on anatomy and then compute the

pair-wise connectivity among averaged time-courses of these ROIs. Both methods were

pursued. In addition, the resting state default connectivity network was also examined.

A methodology was developed to answer the following questions: a) Is there a significant

difference between the resting state functional connectivity of the default mode network,

which generally shows strong functional connectivity among the posterior cingulate and

certain parietal and frontal regions, after ingesting glucose vs. fructose? b) Is there a sig-

nificant difference between the whole-brain functional connectivity of the hypothalamus

after ingesting glucose vs. fructose? c) Is there a significant difference in the pair-wise

functional connectivity among specified ROIs after ingesting glucose vs. fructose? To

reduce the effects of inter-subject variations, a pair-wise connectivity analysis was con-

ducted after averaging the time-courses in targeted ROIs of 3 subjects who completed the

glucose and fructose scans. The fourth subjects drinking times were significantly different

to other subjects and as a result data from this subject was not included in the pair-wise

connectivity analysis. The selected ROIs included key brain regions previously suggested

to be involved in brain feeding and reward circuits. The pair-wise connectivity scores

were converted to t-scores by comparing to the water-only baseline connectivities of the

same pairs.
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4 Results

An example of raw fMRI results from a single subject are shown in Figure 5.2. Due to

scanner drift, these signal cannot be interpreted directly. To account for scanner drift we

demeaned the signal as shown in Figure 5.3. Using a seed region and time course of the

signal before the ingestion of glucose / fructose in the posterior cingulum we were able

to derive correlation maps for the default mode / resting state network (see Figure 5.4

). After the ingestion of glucose / fructose we again used the same seed region and we

were able to qualitative observe changes in the network (see Figure 5.5). We repeated

the same procedure but used the hypothalamus as the seed regions in pre-glucose/pre-

fructose and post-glucose/post-fructose (see Figure 5.6). To expand the search beyond

manual selection of seed regions such as the posterior cingulum and the hypothalamus

we used ROIs derived from the San Antonio Talairach Daemon [52, 53] and correlated

each of the ROIs with each other as shown in Figure 5.7. The colors on the matrix grid

indicate the degree of correlation between the two ROIs. ROIs with t-scores > 2.00 are

shown in Table 5.1.

5 Discussion

Examples of the connectivity images obtained from one such subject are presented in

Figures 5.4,5.5 showing potential differences in the default network between glucose and

fructose ingestion. A correlation threshold of 0.5 was applied. Similar connectivity differ-

ences between the hypothalamic ROI and voxels throughout the brain were also noted.

As the hypothalamus is composed of just a few voxels and is anatomically located in a

region of the brain where susceptibility artifacts are strong, the signal-to-noise ratio in
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Figure 5.2: The hypothalamic fMRI time-course for a subject showing an initial water-
only drink period, the actual drinking period (shaded) followed by either a glucose (top) or
fructose (bottom) drink period. Glucose and fructose experiments were done on separate
days.

the time-course is not very high. Thus more variation is expected in the hypothalamic

connectivity analysis than the default network. The hypothalamic connectivity images

are shown in Figure 5.6. Overall it appears that connectivity of several regions is altered

post-fructose vs. post-glucose but there were significant inter-subject variations (which is

expected).

Though the sample size is very small, the results show a dramatic increase in the

hypothalamic connectivity to very specific regions known to be key components of the

feeding and reward circuits after fructose ingestion when compared to glucose ingestion.

Specifically, an increase in hypothalamic connectivity to the hippocampus, amygdala,

insula, caudate and the nucleus accumbens stands out. The largest increase (t-score of 4.5,

which means an increase of 4.5 standard deviations with respect to glucose connectivity)
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Figure 5.3: (top) The hypothalamic fMRI time-course includes a pre-drink baseline period
preceding a water-only drink and then a second water-only drink. The data is de-trended
by the first water-only period. (bottom) Same as top except the subject ingested a glucose
drink during the second drinking period. The change in baseline trend following glucose
ingestion is obvious.
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Figure 5.4: The default-mode network in a pilot subject during the pre-glucose (left) or
the pre-fructose (right) period. These are expected to be the same but as the glucose
and fructose experiments were done on separate days, minor differences can be seen. The
default network is clearly identified by our protocol.
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Figure 5.5: The default-mode network in a pilot subject during the post-glucose (left)
or the post-fructose (right) period. Several differences can be seen, which need further
analysis to interpret their significance.
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Figure 5.6: The hypothalamic connectivity in a pilot subject during the pre and post-
glucose periods (top and bottom left respectively) or the pre and post-fructose periods
(top and bottom right respectively).
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Figure 5.7: Matrix of thresholded t-scores (t > 2) from pair-wise functional connectivity
between select ROIs averaged over 3 subjects; the color-bar gives the t-score to color
mapping. The most prominent connectivity exists between the left hypothalamus and
left/right hippocampus, left/right amygdala, left/right insula, right caudate head, and
left nucleus accumbens. The highest t-score (4.57) is between the left hypothalamus and
left nucleus accumbens.
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Table 5.1: t-scores corresponding to the pair-wise ROIs shown in Figure 5.7 that exceed
the threshold (t > 2).

ROI 1 ROI 2 t-Score ROI 1 ROI 2 t-Score

L:Hippocampus L:Hypothalamus 2.97 R:Insula L:Caudate Head 2.30

L:Hippocampus R:Caudate Head 2.02 R:Insula R:Nucleus Accumbens 2.31

R:Hippocampus R:Insula 2.08 L:Hypothalamus L:Hippocampus 2.97

R:Hippocampus L:Hypothalamus 3.01 L:Hypothalamus R:Hippocampus 3.01

R:Hippocampus R:Hypothalamus 2.64 L:Hypothalamus L:Amygdala 3.41

R:Hippocampus R:Caudate 2.23 L:Hypothalamus R:Amygdala 2.68

R:Hippocampus R:Caudate Body 2.02 L:Hypothalamus L:Insula 2.22

R:Hippocampus R:Caudate Head 2.99 L:Hypothalamus R:Insula 2.76

L:Amygdala L:Hypothalamus 3.41 L:Hypothalamus R:Caudate Head 2.46

L:Amygdala R:Hypothalamus 3.31 L:Hypothalamus L:Nucleus Accumbens 4.57

L:Amygdala L:Caudate Head 3.47 R:Hypothalamus R:Hippocampus 2.64

L:Amygdala R:Caudate Head 2.03 R:Hypothalamus L:Amygdala 3.31

L:Amygdala R:Nucleus Accumbens 3.31 R:Hypothalamus R:Amygdala 2.45

L:Amygdala L:Anterior Cingulate 2.36 R:Caudate R:Hippocampus 2.23

L:Amygdala R:Anterior Cingulate 2.27 R:Caudate Body R:Hippocampus 2.02

R:Amygdala L:Hypothalamus 2.68 L:Caudate Head L:Amygdala 3.47

R:Amygdala R:Hypothalamus 2.45 L:Caudate Head R:Amygdala 2.41

R:Amygdala L:Caudate Head 2.41 L:Caudate Head L:Insula 2.05

L:Insula L:Hypothalamus 2.22 L:Caudate Head R:Insula 2.30

L:Insula L:Caudate Head 2.05 R:Caudate Head L:Hippocampus 2.02

L:Insula R:Nucleus Accumbens 2.41 R:Caudate Head R:Hippocampus 2.99

R:Insula R:Hippocampus 2.08 R:Caudate Head L:Amygdala 2.03

R:Insula L:Hypothalamus 2.76 R:Caudate Head L:Hypothalamus 2.46
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is seen for the hypothalamic-nucleus accumbens connection, which is known to be a key

component of the feeding circuit. The selected ROIs and their pair-wise connectivity

results are shown in Figure 5.7. The t-scores for all ROIs above the threshold of t > 2 are

listed in Table 5.1. No significant increases in pair-wise connectivity among the selected

ROIs were detected for glucose compared to fructose ingestion.

6 Conclusion

After the publication of Liu et al. 2000’s Nature article [49], there has been a lot of

interest in being able to investigate how brain activity is influenced by food. The tool of

choice has been fMRI. Liu et al 2000 showed how the use of the raw fMRI signal without

deconvolution of the Hemodynamic Response Function (HRF) can give us repeatable

detection of temporal changes in brain activations even though responses from HRF-

based analysis can be seen [54, 33]. Recent developments of functional connectivity and

better knowledge about the default mode network has given us a new framework from

which to investigate the basis of these changes. This paper outlines our initial efforts at

attempting to investigate food related functional connectivity changes using the premise

that the default mode network somehow modulates these responses.

We know that the default mode network is crucial in our ability to maintain homeosta-

sis [55]. Feeding behavior is one complex component of supplying nutrition to maintain

homeostasis and therefore the default mode network should respond accordingly to food

stimulus. The question is whether when and where do these stimuluses get translated into

neurological pathways that solidify our behavior. In particular, how do these differences

in default mode network responses reflect pathological states where the human body is
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unable to regulate feeding behavior properly, leading to the development of obesity. To

make matters more complex, the causality is unknown. In other words, does the patho-

logical feeding behavior cause the differences in responses or do the responses indicate

an underlying condition that causes the pathological behavior. This coupled with the

differential activations between fructose and glucose raises a large number of questions

about the neurological mechanisms that govern our feeding behavior. To our knowledge,

no such results have been reported before and if these results can be verified in a larger

study, they would represent a key discovery in how brain connectivity among key regions

is altered by fructose compared to glucose ingestion.

With regards to fMRI processing and techniques, this study serves to show that there

is still much work that needs to be done to properly understand the results of fMRI

studies. The underlying biological mechanisms that lead to the partial correlations in

functional connectivity are not well know [55]. Even if we were to be able to find changes

that correlate well with parameters such as the ingestion of glucose versus fructose, we

are not able to draw definitive conclusions unless the underlying mechanisms are better

understood. Current glucose ingestion studies together with studies that use pharmaceu-

ticals alter our homeostatic state [56] will help to elucidate some of these mechanisms.

This together with other anthropometric techniques as well as PET studies will further

clarify the phenomenon observed in our fMRI studies [54, 33]. Techniques that better

utilize the temporal information within the fMRI signal will continue to push the enve-

lope in terms of the information elicited from imaging studies. Functional Connectivity

and other techniques will continue to push the evolution of techniques that do not use

the HRF. This will hopefully help us establish a better understanding of how each part
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of the brain responds vis-à-vis another part of the brain and not just be able to isolate

individual activities as predicted by the BOLD HRF.
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1 Introduction

Numerous studies have shown a pattern of progressive hippocampal shrinkage as a result

of mild cognitively impairment (MCI) and Alzheimer Disease (AD). One of the major

pathways affected by the hippocampus is the fornix, and it has been recently shown

that fractional anisotropy (FA) is reduced in normal controls verses AD [DeCarli et al.,

Alzheimers Imaging Consortium IC-P1,July 2008]. The purpose of this study was to

(a) objectively define hippocampal ROIs as most previous studies rely on subjectively

delineated ROIs to perform DTI analysis, (b) correct for varying subject head sizes using

intracranial volume( ICV) of subjects in a novel way to equalize the number of seed points

and their anatomical distribution so that total number of tracts becomes independent of

the subject’s head size, and (c) examine the differences in the equalized streamline fornix

tracts.

Normal MCI AD

Figure 6.1: Normalized Fornix Tracts

2 Methods

Data were acquired on a 3T GE scanner from three groups (10 normal control, 8 MCI, and

7 AD probable) as classified by neuropsychological testing. Multi-slice (2.04 × 2.04 × 4
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Figure 6.2: ICV Normalized Freesurfer-based Hippocampus Volumes in Normal, MCI and
Probable AD

mm3 voxel size, 4 mm thick slices no gap) DTI data were acquired using 25 encod-

ing gradient directions at bvalues of 0 and 1000 sec/mm2 with an acquisition matrix of

128 × 128. Anatomical data were acquired using a 256 × 256 acquisition matrix em-

ploying a SPGR sequence (1 × 1 × 1 mm3 voxel size, 1 mm thick slices no gap) with

TE=3.128ms, TR=7.832ms and TI=450ms. The hippocampi were identified using high

resolution SPGR images via the Freesurfer software package (Harvard/MGH). The auto-

matically segmented hippocampal ROIs were then co-registered back to the DTI subject

space using SPM. Seed points where normalized by adjusting spacing according to subject

intracranial volume (ICV). ICVs were calculated based on a weighted combination of grey

and white matter, and CSF segmented volumes generated by SPM. By using a control

average ICV of 1.5x106 mm3, all seed spacing was adjusted to compensate for ICV in

individuals. Streamline tractography was performed using tensor interpolation with a

0.2 mm step-size utilizing in-house DTI software. Whole-brain tractography data were
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Figure 6.3: ICV Normalized Tract Counts in Normal, MCI and Probable AD

processed by several stages of filtering to obtain the fornix tracts. The steps are based

on two known facts (1) fornix tracts connect the hippocampus and hypothalamus and (2)

these tracts do not cross right/left hemispheres. First, only the tracts which intersect the

hippocampal ROIs are considered. Next, all tracts originating from seed points outside of

the fornix region are eliminated. Tracts originating from the fornix regions that progress

out of the fornix region are kept for tract counting. However, the aforementioned tracts

are cut back to where they deviate from the fornix for display purposes (fig. 1).

3 Results and Discussion

Results of hippocampal volume ( fig. 2) confirm the progressive degenerative effects of

MCI and AD and validate the usability of Freesurfer defined hippocampal ROIs without

any subjective input. ICVNormalized tract counts for the fornix (fig.3) show a similar

progressive reduction. Although there is a measurable decrease in connectivity based on
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Figure 6.4: Hippocampus Volumes and Tract Count Effect Sizes

normalized tract count (Prob AD p=0.039,eff size = 0.9), the effect seems to be less than

what is measured using normalized hippocampal volumes (Prob AD p=0.0007, eff size=

1.8) (table 1). Although the effect of Alzheimer Disease on hippocampal volume is known,

its effects on the afferent and efferent connections between the hippocampus and other

structures via the crucial fornix tract is relatively unknown. Relatively large voxel sizes

were used in this study ( 2x2x4mm3) creating partial volume confounds. We expect that

as higher resolution DTI data are acquired, the effects of partial volume will be reduced

leading to better tract quantitation and improvements in effect sizes corresponding to

fornix and other affected tracts.
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Table 6.1: Effect Sizes and t-test of Normalized Hippocampus Volume and Normalized
Tract Count against Normal Population
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1 Introduction

The fornix and cingulum (limbic regions) are suspected of being affected by mild cognitive

impairment (MCI) and Alzheimer Disease (AD). Recent studies have reported observable

reductions in FA of the cingulum between normal and AD populations. Most studies

resort to manual tracing of the anatomy in patient acquisition space. Objective isolation

of the fornix and cingulum has remained elusive. The purpose of this study was to (a)

bring DTI including tractography to a common template space, (b) define the fornix and

cingulum objectively using tractography, and (c) examine the FA changes among normal

control, MCI and probable AD populations.

Figure 7.1: Fornix FA t-Score Comparison. MCI > AD (top row) NC > MCI (bottom
row). Colors denote the t-score difference between the mean FA of the various populations.
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Figure 7.2: Cingulum FA t-Score Comparison. MCI >AD (top row) NC > MCI (bottom
row)

2 Methods

Data were acquired on a 3T GE scanner from three populations (26 normal control, 16

MCI, and 13 AD probable) as classified by neuropsychological testing. Multi-slice (2.04

x 2.04 x 4 mm3 voxel size, 4 mm thick slices no gap) data were acquired using 25 encod-

ing gradient directions at b-values of 0 and 1000 sec/mm2 with an acquisition matrix of

128x128. Anatomical data were acquired using a 256 x 256 acquisition matrix employing

a SPGR sequence (1 x 1 x 1 mm3 voxel size, 1 mm thick slices no gap) with TE=3.128ms,

TR=7.832ms and TI=450ms. SPM8 was used to co-register the DTI b-value = 0 data
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to the SPGR images. A custom template was created using the 26 normal control scans.

All anatomical scans were normalized to the template using SPM8’s DARTEL suite. The

custom template was then spatially normalized to MNI space. The three step transforma-

tion allows for the FA map to be warped into MNI space. Tractography was conducted in

subject space using normalized seeds inversely mapped from the MNI space and individ-

ual tracts were mapped from subject space to MNI space thereby avoiding the problems

associated with spatial warping of diffusion tensors. A single set of ROIs were defined in

MNI space and applied to the normal control group whole-brain tractography to isolate

the fornix and cingulum. Four processing masks were defined (left fornix, right fornix, left

cingulum, and right cingulum) as voxels where tracts overlapped in at least 50% of the

control group. A voxel-based comparison of the t-score statistics among the FA map dif-

ference of the three different populations was conducted using the four masks to highlight

changes observed in the fornix and cingulum tracts.

3 Results and Conclusions

SPM8’s DARTEL suite provided a much improved normalization of the aged brain pop-

ulations. Visual inspection of the filtered fornix and cingulum tracts confirmed greatly

improved alignment when compared to previous results. The t-score comparisons (Fig.

1 and 2) visually illustrate areas where FA in one population is higher than the other.

There appears to be a progressive degeneration of the fornix and the cingulum. The right

and left fornix branches both exhibit pattern of damage which begins at the hippocampal

end of the fornix and propagates toward the hypothalamus with right greater than left

reduction in FA. The cingulum shows less damage, but does appear to be show progressive
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damage extending to the posterior end, more in right than left. The complete posterior

cingulum portion could not be reliably identified in the common space for all subjects,

suggesting a need for further improvement of normalization in AD. These preliminary re-

sults shows promise in tracking axonal damage with the progression of Alzheimer Disease.

The right greater than left reduction of FA in the fornix and cingulum is consistent with

several reports of white matter atrophy and hypometabolism in AD (e.g., Villain, N. et.

al., J. NeuroSci. 28(24):6174-6181).
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1 Introduction

The microstructural integrity of the limbic regions is frequently compromised in neurode-

generative diseases such as Alzheimer Disease (AD). A key limbic region is the fornix

located proximal to the ventricles. Given the relatively large voxel size used in most

clinical DTI acquisitions, the probability of CSF contamination in the fornix is high, of-

ten leading to interruption of tracts due to either a reduction in FA or misdirection due

to erroneous eigenvector estimation, particularly in AD where ventricles are enlarged.

FLAIR DTI has been used by many investigators to suppress CSF (e.g. Kwong et al.

MRM 21, 157-163, 1991) but at the expense of SNR and data acquisition time, and to

our knowledge, FLAIR DTI is rarely used in clinical studies. Aiming toward eventual

quantification of DTI metrics such as FA and tract density in the fornix and other limbic

pathways in AD, the objective of this work was to develop a post-processing strategy to

correct partial volume effects such that it could be used to analyze existing clinical DTI

data.

2 Methods

Existing DTI data acquired on a 3T GE Signa HDx MRI using a multi-slice, twice

refocused sequence with 128x128 single-shot EPI readout, 25 gradient directions with

b=1000s/mm2, one b=0 image, TR/TE=8000ms/86.1ms, FOV 26cm, two averages, 4mm

thick contiguous 28 slices covering the entire head in 2.03 x 2.03 x 4 mm3 voxels (scan time:

approximately 7 minutes) were used. Relying on a straightforward bi-compartmental

model (e.g., Koo et al. NeuroImage 44:136-144, 2009)
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Figure 8.1: Corrected Primary Eigenvectors after CSF compensation correction in the
anterior portion of the Fornix (Red Original Eigenvector) (Green Corrected Eigenvector)

S = fWMSWM + fCSFSCSF (8.1)

where SCSF , SWM are the signals from a pure CSF and white matter (WM) voxel and

fCSF , fWM are corresponding fractions of CSF and WM. We can isolate the white matter

signal within any particular voxel by extending this model to the DTI signal for the 25

gradient directions given by

Si

S0
=
fWMS

i
WM + fCSFS

i
CSF

fWMS0
WM + fCSFS0

CSF

(8.2)
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This allows us to extract the WM only DTI signal given by

Si
WM

S0WM
=

S − fCSFS
i
CSF

S0 − fCSFS0CSF
(8.3)

As we are only concerned with the mixing between CSF and white matter in this study,

the gray matter (GM) fraction has been ignored but can be readily incorporated in a

three-compartmental model. Derivation of fCSF was based on using MD values of the

voxel. K-means clustering was used to separate all voxels into three clusters: CSF, WM

and GM. A linear interpolation was done between the CSF and the WM MD values as

an estimate of CSF content. To get SCSF and S0CSF , we used only the voxels from the

ventricles and with CSF content fCSF greater than 99%. Correction was then performed

only on voxels with fCSF less than 70 percent to avoid problems with overcompensation

and possible errors in our estimate of fCSF .

3 Results

An increase in FA was found in tract-based ROIs of the fornix after correction, due to

an increase in anisotropy after the isotropic CSF component has been removed (see table

1). Results also indicate that the primary eigenvector and therefore the tractographic

vector orientation can also been corrected (see fig. 1), leading to less erroneous tracts and

allowing for the tractography of fornix at a lower FA threshold (see fig. 2).

79



Table 8.1: Corrected FA scores of 4 Normal age matched elderly subjects

Subject Right Fornix Left Fornix

Corrected FA Original FA Corrected FA Original FA

1 0.4150 ± 0.0372 0.3398 ± 0.0219 0.4428 ± 0.0312 0.3633 ± 0.0210

2 0.2149 ± 0.0182 0.1980 ± 0.0096 0.2801 ± 0.0355 0.2465 ± 0.0170

3 0.2179 ± 0.0344 0.1884 ± 0.0133 0.1997 ± 0.0094 0.1968 ± 0.0058

4 0.2476 ± 0.0370 0.2010 ± 0.0147 0.3175 ± 0.0405 0.2627 ± 0.0227

4 Conclusion and Discussion

Our results suggest that WM voxels that have been contaminated by CSF can be corrected

via a simple compartmental model that boosts FA values (table 1) and corrects for primary

eigenvector orientation estimation (fig. 1). This is particularly useful in aged subjects

that have high degrees of cerebral atrophy that increases CSF contamination in a large

number of voxels.
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Figure 8.2: Corrected Tractography (RED) and uncorrected Tractography (BLUE) at FA
threshold of 0.14 of tracts of the Hippocampus (green ROI). Figure shows (1) correction
recovering the superior portion of the fornix (2) reduction of erroneous tract.
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1 Abstract

Diffusion Tensor Imaging is a powerful imaging modality that allows us to investigate the

underlying white matter fiber structure of the brain. However, it has many limitations,

including its inability to resolving fiber crossings. Many multi-fiber techniques attempt

to solve this problem, but they often require high power computation as well as High

Angular Resolution Diffusion Imaging (HARDI) data [57]. Since diffusion imaging has

the potential to contribute to the presurgical planning by clearly delineating white matter

anatomy and integrity, it is important to determine methods that solve the crossing-fiber

problem in the clinical setting. Here, we explore the use of a recently developed tractog-

raphy technique that utilizes Independent Component Analysis (ICA)-based multi-fiber

orientation estimation. This ICA-based technique leverages neighborhood voxel informa-

tion for fiber estimation and has been shown to function especially well with clinical data

that have small number of gradient directions and b-values, using limited computation

power and time [58, 59]. We were able to reconstruct estimations of the white matter

corticospinal tracts from both of the MICCAI 2013 Challenge neurosurgical cases. Pa-

tient 1 demonstrates penetration of the corticospinal tract by the mass, suggesting that

complete retraction of the glioblastoma would result in severe distruption of the right

CST. Any remaining right CST related function could be lost. Patient 2 shows some

displacement of the right CST. When comparing to the contralateral left CST, the right

CST seems to be relatively intact. The mass also seems to have displaced a small portion

of the right CST. In conclusion, the ICA-based method performed relatively well in both

patients, clearly delineating the CSTs relative to their respectives masses. Our method

also showed marked improvements when compared with the single-fiber DTI model.

Keywords: MRI, ICA, DTI, Tractography, DWI, Neurosurgery, Multi-Fiber
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2 Introduction

Radiological examinations play a crucial role in surgical planning and guidance. Magnetic

Resonance Imaging (MRI), in particular, is of considerable use due to the lack of ionizing

radiation, and can serve not only for treatment planning but also for evaluating outcomes.

In surgical oncology, preoperative radiological examinations not only provide information

about the extent of masses as well as indication of the degree of necrosis and edema,

but also give a measure of tissue integrity not observable intraoperatively. In particular,

preservation of white matter connectivity can severely affect postoperative outcomes in

terms of both behavior and function. In this challenge, we attempt to mediate postopera-

tive motor function loss by accurate delineation of the corticospinal tracts using diffusion

weighted imaging and tractography.

Diffusion weighted imaging (DWI) is a unique modality in medical imaging which

enables us to model the diffusion pattern of water in the brain. The most commonly

used DWI method is diffusion tensor imaging (DTI), in which rank 2 tensors or 3 x 3

matrices are computed at each voxel using the diffusion weighted images. The primary

eigenvector indicates the primary direction of unrestricted diffusion in a particular voxel

and is thought to be aligned with neuronal fiber paths in the brain.

This model of diffusion, however, does not take into account fiber crossings which have

been hypothesized to occur in the majority white matter voxels in the brain[60]. Currently,

there are many other models using high b-values, and large numbers of gradient directions

such as HARDI[57] or diffusion spectrum imaging[61] data, but these datasets are hard to

acquire in a clinical settings due to limitations in acquisition time. Our method attempts

to circumvent these issues by estimating multiple fibers in each voxel using clinical data
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Table 9.1: DWI Information

Patient 1 Patient 2

Number of Gradient Directions 20 20

Image Size (mm×mm) 1.14 x 1.14 1.14 x 1.14

Slice Thickness(mm) 5.2 5.2

b-value (mm/s) 1000 1000

Number of Slices 30 29

Number of Repetitions 4 4

with limited b-values and gradient directions, and utilizing much lower computational

resources when compared to methods such as spherical deconvolution[62].

3 Methods

3.1 Data

The 2013 MICCAI DTI Challenge provided participants with DWI datasets from two

neurosurgical cases. Patient 1 has a recurrent/residual glioblastoma W.H.O Grade IV.

Patient 2 is diagnosed as ’Infiltrated Glioma, no grade’. Diffusion weighted images were

provided in the NRRD format with 20 gradient directions, each with a b-value of 1000

s/mm2. Patient 1’s image had 30 slices and Patient 2 had 29 slices. The acquisition was

repeated 4 times with voxel dimensions: 1.14 mm x 1.14 mm x 5.2 mm. Co-registered

anatomical images as well as a labeled tumor volume were also provided. Two additional

datasets of Patient 3 with diffusive low grade WHO II glioma were released for further
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evaluation. The Patient 3 data was aquired at 2 timepoints, 6 weeks and 2 weeks prior to

surgery and acquired with 30 gradient directions and 20 gradient directions respectively.

3.2 Pipeline

All data including the DWI data was first converted to a NIFTI file format and checked

for obliqueness and consistency in orientation. Next, we computed a mean DWI volume,

using the 4 base volumes, as well as brainmask with AFNI[63]. We then use Indepen-

dent Component Analysis to recover the directions of individual fibers from a mixture

of fibers within a voxel. Display and render of tracts as well as filtering was done using

TrackVis[64].

3.3 Independent Component Analysis

Consider the diffusion field of a fiber as the source, and the voxel as a sensor; in this

formulation each voxel is considered to be ”sensing” signals from multiple sources. The

implementation of our multi-fiber ”unmixing” paradigm is based on the paper by Singh et

al 2010[58]. The attenuated diffusion signal from each of the gradient directions, Xi can

be written written as Xi = Si/S0, where i is each gradient direction, Si is the diffusion

weighted image and S0 is the non-diffusion weighted scan.

In using ICA, a few assumptions were made: (1) Fibers cross through multiple voxels

maintaining their orientation and (2) Fiber signal sources are independent. The latter

assumption is made considering the rather large size of voxels (on the order of mm)

compared to the order of diffusion of water molecules in axons (on the order of 10um).

Unless the diffusion time is extremely long, molecules diffusing around axons of one fiber

will not have a significant interaction with those diffusing around axons of another fiber.
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Therefore similar to the conventional ICA construction, assuming we have k fibers crossing

in a small neighborhood of n voxels, we can formulate the fibers as k independent sources,

s1, . . . , sk from x1, . . . , xn measurements:

xi =
k∑

j=1

aijsj ∀i = 1, 2, . . . , n (9.1)

where aij is the mixing fraction of j-th source in the i-th voxel.

The aim in ICA is to find a linear transformation of the dependent sensor signal xi that

makes the outputs as independent as possible. In vector-matrix notation: x = As or s = A−1x.

Each linear combination yj =
∑
wijxi would be an estimate of a single source if each row

of matrix A−1 is wij . ICA assumes that the sources are non-Gaussian and Singh et

al 2010[58] showed that the Si/S0 distributions of a single fiber are approximately non-

Gaussian. Therefore ICA should correctly assume that the sum of non-Gaussian variables

would be increasingly more Gaussian than our original source. From this fact, we postu-

late that the Wij that maximizes the non-Gaussianity of yi give an accurate estimation

of the orientation of our sources. To solve for this linear transformation, we started with

a random set of wij , and used a center voxel surrounded by n − 1 voxels to maximize

the non-gaussianity of yj with the fastICA algorithm[65], which relies on negentropy to

maximize non-gaussianity. After computing the sources using ICA, DTI processing was

done to calculate the tensors and estimate the fiber directions.
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Table 9.2: Tractography Parameters

Type: Streamline

FA Stopping Threshold: 0.02

MD Stopping Threshold: 4.00

Track Step Length: 0.1 mm

Max Number of Steps: 4000

Maximum Change in Angle: 45◦

Number of Neighborhood Voxels used in ICA Estimation: 8

3.4 Tractography

Whole-brain streamline tractography was performed from the ICA fiber estimations. At

each point, the consecutive direction was estimated as the weighted sum of correlated

directions from neighborhood voxels. The parameters used were as follows:

The ROIs used for tractography filtering includes a slice filter placed in the z-direction,

to ensure tracts meet a certain length, a slice filter placed in Y-plane at the middle of

the volume, and a large sphere filter posterior to the brainstem, both to remove spurious

tracts.

4 Results

Figures 9.1 and 9.3 show the results of our ICA-based multi-fiber tractography for Patient

1 and 2, respectively. For comparison, we ran the exact same streamline algorithm but

instead used the primary eigenvector orientation from single-fiber DTI as our estimate of

fiber orientation in Figures 9.2 and 9.4. We rendered the tracts in front of a coronal color
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Figure 9.1: Patient 1 CSTs using multi-fiber ICA-based tractography with coronal slice
showing color FA; without tumor volume (L) and with tumor volume (R).

FA slice to give a sense of overall orientation in the brain. The tumor volume is rendered

as a semi-opaque volume on the right.

5 Discussion and Conclusion

This paper demonstrates the performance of ICA-based DWI tractography of the CST in

two neurosurgery cases. Patient 1 has a tumor that is positioned central to the CST tract

and is more challenging than Patient 2. In the former case, the differences between single-

fiber tractography versus multi-fiber ICA-based tractography is more obvious. However,

upon closer inspection the differences between single-fiber tractography versus multi-fiber

tractography become increasingly stark in the peritumoral regions as well as regions of

known crossings near the corpus collosum, cerebral cortex as well as lower down in the

brain stem.
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Figure 9.2: Patient 1 CSTs using single-fiber DTI tractography with coronal slice showing
color FA; without tumor volume (L) and with tumor volume (R)

Figure 9.3: Patient 2 CSTs using multi-fiber ICA-based tractography with coronal slice
showing color FA; without tumor volume (L) and with tumor volume (R)
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Figure 9.4: Patient 2 CSTs using single-fiber DTI tractography with coronal slice showing
color FA; without tumor volume (L) and with tumor volume (R)

The authors believe that the multi-fiber neighborhood technique may have mitigated

some of the effects of edema from the tumor. This is possible because the edema compo-

nent can be seen as a independent source of signal consistent across neighborhood voxels

close to the tumor. We also believe that the large 5.2 mm slice thickness may be causing

severe partial volume effects. The non-isometric voxel sizes may also cause directional

biases downstream from the tensor estimation and may affect tractography results. In

previous work with non-isometric voxels, the authors observed differential performance

from the ICA methodology between isometric and non-isometric voxels.

More work needs to be done to determine whether the increased signal-to-noise ratio of

the larger slices outweigh the distortion effects it may have on multi-fiber and streamline

tractography techniques that rely on neighborhood information. The geometry of the

tracts in question may also determine the optimal geometric configuration of voxel sizes

and location. In this case, the CST tractography may seem denser simply because of
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the direction bias in the Ventral-Rostral direction caused by increased slice thickness

in the Z-direction and may be mistaken for improved results. This can be seen in the

comparison between our single-fiber and multi-fiber methods in patient 2, where the ICA-

based methods seems to have decreased fiber density, but where there is also less noise at

the peritumoral regions as well as the end points of the tracts.

In conclusion, this paper (1) demonstrates the application of a computationally thrifty

multi-fiber orientation estimation methodology suitable for neurosurgical planning appli-

cations, (2) revisits and examines its performance against traditional tractograpy using

DTI’s primary eigenvector but in a clinical neurosurgical setting and (3) aims to be

the first step towards fine tuning both imaging as well as tractographic parameters for

eventual vetting of the ICA methodology as a viable multi-fiber tractographic tool for

neurosurgical planning.
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1 Abstract

Most white matter related neurological disease exhibit a large number of White Matter

Hyperintensities (WMHs) on FLAIR MRI images. However, these lesions are not well

understood. At the same time, Diffusion MRI has been gaining popularity as a powerful

method of characterizing White Matter (WM) integrity. This work aims to study the

behavior of the diffusion signal within the WMH voxels. The goal is to develop hybrid

MR metrics that leverage information from multiple MR acquisitions to solve clinical

problems. In our case, we are trying to address the WMH penumbra (as defined by

Maillard et al 2011[66]) where WMH delineates a foci that is more widespread than than

the actual damage area presumably due to acute inflammation. Our results show that

diffusion MR metrics may be able to better delineate tissue that is inflamed versus scar

tissue but may be less specific to lesions than FLAIR. Therefore, a hybrid metric that en-

codes information from both FLAIR and Diffusion MR may yield new and novel imaging

information about the progression of white matter disease progression. We hope that this

work also demonstrates how future PACS systems could have image fusion capabilities

that would be able to leverage information from multiple imaging series to yield new and

novel imaging contrast.

Keywords: DTI, Diffusion MRI, MRI, Alzheimer’s Disease, Dementia, WMH, White

Matter, FLAIR, Neuroimaging
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2 Purpose

White matter hyperintensity (WMH) burden as detect on FLAIR MR images has been

associated with cognitive impairment[67]. However, the degenerative process that leads

to such lesions is not well understood. In this study, we investigate the diffusion proper-

ties of white matter lesions using diffusion MRI at 3T. To this end, a segmentation and

coregistration routine was developed to segment WMHs and coregister them to diffusion

measurements. The objective of this work was to characterize the diffusion characteris-

tics of WMHs to allow for more accurate staging of white matter disease as well as to

differentiate between early-stage lesion formation and end-stage white matter scars.

Table 10.1: Summary of Subject Demographics

Subject WMH Voxels Total WM Voxels Percent WMH Sex Age

1 6,230 1,168,404 0.53% M 73

2 1,411 1,113,728 0.13% F 70

3 9,767 1,146,941 0.85% F 86

4 13,546 1,334,280 1.02% M 75

5 1,282 1,096,588 0.12% F 78

3 Methods

Diffusion tensor imaging (DTI) data was acquired on a 3T GE Signa HDx MRI using a

multi-slice, twice refocused sequence with 128x128 single-shot EPI readout, 25 gradient

directions with b=1000s/mm2, three b=0 images, TR/TE=8000ms/86.1ms with 2.03 x

2.03 x 2 mm3 voxels. 3D T1-weighted and FLAIR images from 5 cognitively normal aged
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Figure 10.1: Data for subject with very high WMH load. (A) FA image for WMH
candidate region mask. (B) Histogram fitting for dynamic thresholding. (C) WMH image
(Red). (D) MD and FA histograms in WMH regions vs. all WM regions.)

subjects. Initial preprocessing involved several standard toolkits available in the public

domain. FreeSurfer was used for intensity non-uniformity correction and the removal of

non-brain tissues. SPM8 was used to coregister the DTI b=0 data to the T1-weighted and

FLAIR images. A WMH candidate region mask was generated using an in-house written

MATLAB code that was driven by DTI fractional anisotropy (FA) measurements. WMH

segmentation was processed in the WMH candidate region using dynamic thresholding

based on histogram analyses (see Fig. 10.1: A, B, C). Diffusion measurements were taken
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in the WMH regions and compared to those measured in all white matter regions of the

brain.

Figure	
  2	
  –	
  MD	
  and	
  FA	
  histograms	
  for	
  low	
  WMH	
  
load	
  and	
  high	
  WMH	
  load	
  subjects	
  compared	
  with	
  
MD	
  and	
  FA	
  in	
  all	
  WM	
  for	
  each	
  subject.	
  

	
  

Figure 10.2: MD and FA histograms for low WMH load and high WMH load subjects
compared with MD and FA in all WM for each subject.

4 Results

For subjects with low WMH load, mean diffusivity (MD) values within the WMH regions

were distributed differently in the histogram compared to MD values in all white matter
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(WM) regions. The histogram of WMH FA values for these subjects maintained a similar

distribution to all WM regions. Histograms for subjects with high WMH load exhibited

the opposite relationship (see Fig. 10.2). For the subject with a very high WMH load,

the MD and FA histograms for WMH regions were similar (see Fig. 1 D).

5 Conclusion

Our results suggest that early-stage lesion formation is may be characterized by MD

changes, while regions with long-term lesions display FA changes. End-stage WM scars

exhibit similar DTI measurement distributions, indicating stabilization of the tissue.

This is consistent with previous observations of what investigators have termed WMH

penumbra[66], where the WMH delineated a foci of more widespread and subtle white

matter damage that can be characterized with Diffusion MRI.
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1 Abstract

Purpose: To compensate for imaging changes in areas of cerebral infarct to facilitate

successful brain segmentation in FreeSurfer.

Materials and Methods: A non-linear co-registration method to and from an atlas

space allowed for voxel intensities from the contralateral hemisphere to fill in areas of

cerebral infarct in order to facilitate successful segmentation. A validation study was

conducted using T1 volumes of 5 normal age-matched subjects, with known he FreeSurfer

analysis, were simulated with cerebral infarcts from 8 stroke patients.

Results: Before application of our method, FreeSurfer had a completion rate of 50%

with our data. Application of our method yielded 100% completion rate in FreeSurfer.

Conclusion: Our method allows for the inclusion of data with cerebral infarcts into

automated brain segmentation workflows.

Keywords: FreeSurfer, stroke, infarct, parcellation
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2 Introduction

Volumetric analyses of brain images play an important role in investigating cerebral dis-

eases that affect brain structure such as Alzheimers disease or Vascular dementia in elderly

subjects (1). Brain volumes decrease with age, and changes in particular regional volumes

may be associated with certain neurological disorders. For example, it is shown that the

hippocampal volumes are particularly affected in patients with Alzheimers disease (2).

Segmentation of brain volumes into various regions requires a good deal of anatomical

knowledge and has traditionally been done manually by experts trained in this area (3).

However, this process is tedious, requires the resources of skilled experts, and is prone to

human error, making it unfeasible for large scale studies, especially those that require the

processing of data of hundreds of subjects.

As an alternative to manual segmentation, there exist several software packages that

facilitate automatic brain segmentation. Many packages are capable of segmenting the

brain volume into white matter, gray matter and cerebrospinal fluid, but only a few

are capable of segmentation and parcellation into more specific regions. FreeSurfer (4),

frequently used in the neuro-imaging community, is a robust, validated package that

utilizes volumetric methods for the cortical and sub-cortical segmentation of structural

MRI. In the processing pipeline, FreeSurfer incorporates prior probabilities of tissue classes

(the probability that an anatomical feature exists at a certain global position), as well

as the relative spatial positioning pattern of various tissues for the segmentation and

parcellation processes (5), (6). Therefore, the classification of various brain regions is

highly dependent on the integrity of neighborhood voxels and their structure, which leads

to frequent failure of FreeSurfer processing in the presence of pathologic lesions or cerebral
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infarcts often present in elderly subjects. For these volumes, not only structures within,

or in the vicinity of infarcts are affected, but distal regions may also be misclassified.

Classification of brains with infarcts is indeed important in order to gather information

pertinent to brain volumes with stroke. In addition, neglecting such data would not

only accrue unnecessary costs, but would also hinder analysis for regions not affected by

the stroke. Efforts have been made to segment stroke volumes using multimodal image

information (7); however, this information may not always be available. An important

pre-processing step for large-scale studies is registration to a common template. Brain

volumes with stroke have a significant amount of missing tissue as well as sulcal and

morphological variability, thus, affecting the registration precision (8), (9). Registration

of brain volumes with lesions using SPM (Statistical Parametric Mapping) software can be

facilitated by filling-in the lesion with tissue from the contralateral hemisphere (10). The

accuracy of this method, however, depends on the symmetry of the brain, and therefore

is impractical in large-scale studies involving brain volumes of the elderly.

Taking into account the issues stated above, Solodkin et al. (11) proposed filling-in

the stroke region using tissue from the homologous region of the contralateral hemisphere

as follows. First, a mask was created by manually outlining infarct boundaries. This mask

was used to acquire voxels from the contralateral hemisphere to transplant and morph

into the infarct region. The alignment to the region surrounding the infarct was improved

by adding manually traced sulci in the hemisphere with the infarct. The brain was then

transformed into the Talairach space, where hemispheres were separated, interchanged,

and rigidly registered to the ipsilateral hemisphere before being inversely deformed back

into the native subject space. The scar lines created due to lack of continuity of tissue were

removed using suturing software and an expanded lesion mask. Validation in this study

102



was done by comparing voxel differences between hemispheres, under the assumption that

the overall structure would be the same for both hemispheres in a normal brain.

In this paper, we have demonstrated a similar technique that simplifies the filling

process by completely eliminating the labor-intensive manual sulci-drawing step. It is

shown below that generating a filled volume by automatically replacing the region from

the contralateral hemisphere produces results reasonably similar to the original volume.

To validate our technique, we manually simulated strokes in brain volumes of healthy

elderly normal subjects and compared ratios of the cortical and sub-cortical volumes to

their ground truth respectively, before and after filling the stroke. This approach requires

minimal manual intervention and therefore facilitates analysis of large-scale volumetric

studies requiring FreeSurfer parcellation of cortical/sub-cortical regions. In this method,

we used SPM as it is a widely accepted MATLAB based tool, which can be used on any

operating system.

As subjects undergoing an MRI scan are typically not positioned exactly symmetri-

cal with respect to the midline of the brain, identification of homologous regions in the

contralateral hemisphere requires an accurate realignment and spatial normalization of

the brain. Spatial normalization of T1-weighted images being subjected to FreeSurfer

analysis was accomplished by SPM affine and non-linear transformations (12) that map

the coordinates of the subjects brain to the MNI template. First, the infarct boundaries

were outlined manually to create a mask. The infarct was then filled-in with the mean

intensity of the gray and white matter of the contralateral hemisphere of the T1 brain

volume, as without such uniform filling, normalization often failed (10). The template

used for spatial normalization was the MNI152 template acquired from the Montreal
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Neurological Institute website. The result of the normalization in MNI space was man-

ually compared to the template to check the correspondence of major features. After

satisfactory correspondence between the two brain volumes was confirmed, the left and

right hemispheres of the brain were interchanged (in MNI space) and normalized a second

time. This step is equivalent to co-registering the contralateral hemisphere to the infarct-

containing hemisphere and reduces the inter-hemispherical differences from morphological

distortions likely to be caused by the infarct.

The volume was then mapped back to the subject space using the inverse deformation

field. Finally, voxels corresponding to the infarct were inserted into the original subject

data from this inverse mapped image. The output after each step along with the procedure

is shown in Figure 1.

3 Validation

To validate our technique, cerebral infarcts from 8 stroke patients were simulated one

at a time in T1 volumes of 5 normal elderly subjects in whom the FreeSurfer analysis

was known. The normal elderly brains were determined by visually confirming no strokes

were present and by checking the CDR scores of the subjects. Insertions of infarcts

into the normal brains were done in normalized MNI space to account for the variances

in brain symmetry and shape in native space. To simulate a realistic case, the infarct

intensities were normalized to match that of the volume they were being placed into.

After infarct insertion was completed in the MNI space, the inverse deformation field was

applied to transform the volume back into the subjects native space. The infarct region

was then transferred and placed into the original healthy brain. This final volume was
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used as the starting point to apply the steps of our filling technique described earlier in

the Methods section. To avoid inaccuracies caused by interpolation, we avoided directly

using the deformed volumes. FreeSurfer was then run on all the original normal elderly

brain volumes, all the un-filled volumes generated after various stroke insertions, and all

of the filled volumes after implementing our approach. The outputs from all studies were

evaluated quantitatively by comparing ratios of the cortical and sub-cortical volumes to

their ground truth respectively, before and after filling the stroke. The regions entirely

or partially within the infarct mask, as well as regions not relevant for this study such

as ventricles and vesicles were discarded from the final cortical and sub-cortical volumes.

This was done by using the FreeSurfer command mri segstats with the –mask option to

find regions that are partially or completely included in the mask. The mean and standard

deviation of the ratios for the various brain regions acquired from the 40 validation studies

were computed and the histograms were fit to a Gaussian distribution for comparison.

4 Results

An example of FreeSurfer brain parcellation in a validation study from a subject with a

relatively large infarct is shown in Figure 2. Significant changes were seen before and after

filling-in the infarcted region. Fig. 2(a) shows an example of a simulated stroke/infarct

region. This particular infarct was in the right pre-frontal region and therefore results

for the right hemisphere are displayed. The regions encompassed within the infarct are

the Caudal Middle Frontal Gyrus, the Precentral Gyrus, the Superior Frontal Gyrus,

the Insula, and the Parsopercularis. Fig.2 (b) displays the ground truth parcellation,

while (c) the result after inserting this infarct. The yellow circles indicate regions outside
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the infarcted region that show high deviation from the ground truth. The similarity

of the parcellation between the ground truth and the result after filling, shown in (d) is

remarkable. Brain volumes inserted with the same infarct had in general many overlapping

areas, which were eliminated when calculating the aggregate ratios for analysis. Regions

that had a partial infarct were also eliminated and the average was computed only with

volumes that did not have any infarct in the regional volume. Fig. 3(a) shows the ratios

for one simulation study using one infarct in five different normal brain volumes. Less

variation exists between the parcellated brains as exhibited by the smaller error bar for the

filled case and the case when smoothing is also applied after filling. Histograms generated

from averaged ratios of all combined simulation studies (8 brains x 5 lesions) for the filled,

filled and smoothed, and unfilled cases are fit to a Gaussian distribution and shown in Fig.

4 (b). The filled volumes have a mean slightly closer to 1.0 and about 30% smaller standard

deviation, reflecting the closeness of the reconstruction to the ground truth. Although

the mean for all cases is close to 1, it is important to note that larger strokes limit

the reconstruction affecting distal regions as well as the proximal, causing the standard

deviation for the unfilled brain volume ratios to increase. A comparison of our SPM-based

approach was made to using the symmetric diffeomorphic mapping normalization option

(SyN) included in ANTs (Advanced Normalization Tools) software (13). ANTs provides

open-source functionality for deformable normalization with large deformations. SyN was

placed as the top performer amongst 14 other tools in an independent evaluation of ANTS

normalization tools (14) and therefore is used for comparison.

For this evaluation, the brain volume was first normalized to a template space and

then separated into the left and right hemispheres and inverse normalized to the subject

space. The hemisphere without the lesion is then normalized to the hemisphere with the
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lesion using the SyN option in the ANTS tool. The procedure outlined in the paper by

Solodkin et. al (11) was followed except for the manual delineation of sulci. FreeSurfer

was run again on these volumes and volume ratios from various regions of the original to

the filled using our SPM based method was compared to that using ANTs diffeomorphic

mapping. For this comparison, fewer subjects were used (4 infarcts in 3 different normal

brains) but as shown in Figure 4, the histogram and the distributions are very similar,

with the standard distribution acquired by ANTS being slightly better. Our approach,

when applied to the stroke subject volumes, works well even in brains with larger lesions.

Although for this comparison, the ground truth is unknown, FreeSurfer parcellations and

segmentations are manually examined for quality and there improvement noticed after

filling in the infarct region. The results of infarct filling in a stroke subject are shown in

Figure 5. The dotted yellow circle indicates the stroke and we can clearly observe that

there is a significant difference in some of the distal as well as proximal volume regions

before and after the technique is applied.

5 Discussion

Out of 16 stroke brain volumes investigated in this study, FreeSurfer failed to complete

processing on half of them before our technique was applied. All 16 volumes were pro-

cessed successfully after filling. Therefore, our SPM-based approach is useful as a simple,

automated pre-processing step before running FreeSurfer analysis for brain volumes con-

taining infarcts. This method is very important in AD volumetric analysis as it would

help quantify the regional volumes more accurately. Our FreeSurfer comparisons were

also done with infarcts filled with uniform grayscale intensity, which was the mean of the
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gray and white matter. However, the accuracy of the output varied widely depending

on the stroke location (i.e. brain volumes with infarcts located in regions with greater

intensity changes had inaccurate segmentation/parcellation). The location and size of the

stroke is a limitation to be considered in future work. These factors affect the amount

of sulci the stroke spans and may limit the accuracy of FreeSurfer results as our current

process does not correct for the mismatch of sulci.

6 Conclusion

In conclusion, the results above suggest that our filling approach is a promising technique

to conduct accurate volumetric analyses of brain structure even in the presence of cerebral

infarcts, uses the widely accepted SPM software, requires minimal manual interaction,

and is thus suited to automate processing of large-scale clinical studies. The methods

discussed in this paper enable us to improve the ability of template methods to work

when there exist pathologies that either remove or distort the brain in a major way. This

is not limited to stroke and can be utilized for brain tumors, surgical removal, traumatic

brain injury, as well as other neurological pathologies. Also, this method could be used

to improve the functionality of any template based method with not only FreeSurfer but

other software as well.
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Figure 11.1: Diagram showing the process for filling in the brain infarct and the output
after each step.
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Figure 11.2: FreeSurfer parcellation result for validation study. (a) T1 slices showing
simulated infarct; (b) Ground truth FreeSurfer parcellation; (c) FreeSurfer parcellation
before filling simulated stroke; (d) FreeSurfer parcellation after filling. Circles highlight
regions where significant distortions have been corrected after filling.
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Figure 11.5: Comparison of FreeSurfer parcellation before and after filling in the stroke
using SPM based approach. Dotted yellow circle indicates regions where infarct was
present. Distal regions as well as proximal regions are observed to be affected significantly.
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1 Abstract

The most commonly used method for bone age assessment in clinical practice is the book

atlas matching method developed by Greulich and Pyle in the 1950s. Due to changes in

both population diversity and nutrition in the United States, this atlas may no longer be a

good reference. An updated data set becomes crucial to improve the bone age assessment

process. Therefore, a digital hand atlas was built with 1,100 children hand images, along

with patient information and radiologists readings, of normal Caucasian (CAU), African

American (BLK), Hispanic (HIS), and Asian (ASI) males (M) and females (F) with ages

ranging from 0 18 years. This data was collected from Childrens Hospital Los Angeles. A

computer-aided-diagnosis (CAD) method has been developed based on features extracted

from phalangeal regions of interest (ROIs) and carpal bone ROIs from this digital hand

atlas. Using the data collected along with the Greulich and Pyle Atlas-based readings and

CAD results, this paper addresses this question: Do different ethnicities and gender have

different bone growth patterns? To help with data analysis, a novel web-based visualiza-

tion tool was developed to demonstrate bone growth diversity amongst differing gender

and ethnic groups using data collected from the Digital Atlas. The application effectively

demonstrates a discrepancy of bone growth pattern amongst different populations based

on race and gender. It also has the capability of helping a radiologist determine the

normality of skeletal development of a particular patient by visualizing his or her chrono-

logical age, radiologist reading, and CAD assessed bone age relative to the accuracy of

the P&G method.

Keywords: Bone Age Assessment, Digital Hand Atlas, Web-based application, Computer-

aided-diagnosis
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2 Introduction

Pediatric bone age assessment is an important procedure that allows a physician to judge

the degree of a patients skeletal bone development relative to the patients chronological

age. Discrepancies between bone age and chronological can occur due to growth disorders

that can stem from endocrine disorders or malnutrition. Accurate diagnosis is required

to help determine proper treatment. The most commonly used method for bone age

assessment in clinical practice is the book atlas matching method developed by Greulich

and Pyle [80, 81]. This method is based on visual comparison of the patients hand x-

ray with images collected in the atlas. The closest match is subjectively selected by the

radiologist and yields the bone age of the patient (Figure 1). However the book atlas

has not been updated since its initial publication in the early 1950s. The data collected

in the original atlas was derived solely from upper middle class Caucasian populations

residing in the midwest of the United States. Due to changes in both population diversity

and nutrition in the United States, this atlas may no longer be a good reference. An

updated data set has become crucial to improve the bone age assessment process. For

this purpose, left hand X-ray films of normal children along with pertinent data related to

patient growth factors were acquired at Childrens Hospital Los Angeles. [82, 83, 84] The

data was divided into eight categories by race and gender. A computer aided diagnosis

(CAD) method was developed based on features extracted from phalangeal regions of

interest (ROI) and carpal bone ROI. [85, 86, 87, 88, 89] For data analysis, a web-based

statistical visualization application was developed to help address the following issues: 1)

Does each race have distinct bone growth patterns? and 2) More importantly, is the G &

P atlas still a good reference for bone age assessment of todays children?
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Figure 12.1: Bone age assessment procedure in clinical practice.

3 Methods and Materials

3.1 Data Collection

Building of the Digital Hand Atlas A digital hand atlas was developed with data from

eleven hundreds children. This consisted of hand images collected from Childrens Hospital

Los Angeles accompanied by patient information and radiologists readings. The data

consisted of normal Caucasian (CAU), African American (BLK), Hispanic (HIS), and

Asian (ASI) males (M) and females (F), with ages ranging from 0 18 years. [82, 83, 84]

Each hand image and the subjects demographic data, along with two radiologists readings

and CAD-based bone age were populated into a mysql database. The database was

integrated with a web server at the Image Processing and Informatics Laboratory, USC.

To simplify statistical testing as well as data visualization, the two radiologists readings
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Figure 12.2: Sample Hand Image from the CHLA data collection process. All pertinent
bones that were used as ROIs in the CAD program are labeled.
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Figure 12.3: Simple GUI to visualize differences between the different Study Groups.

were averaged to get one reading-based age per subject. Figure 2 is a sample hand image

with phalangeal and carpal ROIs outlined.

3.2 Data Visualization - Web GUI (Graphical User Interface) Develop-

ment

A separate JAVA applet-based platform-independent software was developed to assess

relevant data in the Digital Hand Atlas database and to plot results. The GUI programs
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Figure 12.4: Clinical GUI to compare a patients CAD and Radiologists Readings relative
to the accuracy of the Radiologists Readings from the Digital Hand Atlas Database. The
three black horizontal lines bisected by the vertical line marks the mean as well as the
upper and lower standard deviation of the pediatric radiologists G&P-based readings
of normal cases with that specific chronological age. The yellow marker represents the
radiologist reading of the current case. The red marker represents the CAD output of
the current case. The GUI allows the user to assess the CAD and Pediatric Radiologists
readings against the accuracy of the gold standard - the accuracy of G&P readings of
the normal cases in the database. Any reading variation away from the chronological age
that is greater than the accuracy as set by the gold standard indicates a possible growth
disorder.

were developed to compare Pediatric Radiologist Readings, CAD results with Chronolog-

ical Age amongst different racial and gender groups. The first GUI program (see figure
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Figure 12.5: The figure illustrates that gender effects bone age assessment with both
reading and CAD methods. (a) Caucasian male; (b) Caucasian female. The x-axis is
chronological age and the y-axis is either radiologists reading or CAD result.

2) was used as a tool to plot graphs with the users choice of Radiologists Readings, CAD-

based result or Chronological age as the X or Y axis. The JAVA applet runs on a web

server of choice and connects to a mysql database on the same machine for its input data.

[90, 91] A php script that connected to the mysql database was used as an intermediary

data source for the JAVA applet. The JAVA applet passes the necessary inputs to the

php script, which then retrieves the relevant information from the database without com-

promising data integrity. One feature of this design is that as the data is updated in the

database, the graphing output will change accordingly. In this study, four comparison

studies based on the specific population combinations were conducted using this GUI:

1) All eight categories are individually compared, 2) Male and Female are combined to

form four ethnic groups for comparison, 3) All male and all female are combined to form
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Figure 12.6: The figure illustrates that ethnic or racial origin effects bone age assessment
with both the reading and CAD methods. (a) Asian; (b) Caucasian. The x-axis is
chronological age and the y-axis is either radiologists reading or CAD result. The x-axis
is chronological age and the y-axis is radiologists reading.

Figure 12.7: The divided age sets in evaluation. (a) for female and (b) for male.

two gender groups for comparison, and 4) All eight categories were combined to form one

group.
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Figure 12.8: Plots of readings between race pairs (a) Asian female and Caucasian female;
(b) Hispanic female and African American female. The x-axis is chronological age and
the y-axis is radiologists reading.

3.3 Prototype of a Clinically Applicable GUI

To demonstrate the clinical viability of the CAD methodology, a second GUI was devel-

oped to allow the user to visualize the current patients data against information in the

database. The mean and standard deviation of the radiologists readings of the normal

cases in the database for that particular chronological age is shown along with the current

patients results. If the CAD assessed bone age or the Pediatric Radiologist Readings falls

outside of the range of error, the patient could have a case of suspected abnormal bone

development. (see figure 3)
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4 Results

4.1 Plots

The plotting application allows users to visualize the normal data from the digital hand

atlas, by race, gender or combination among race and gender. Figures 4-5 shows the

output of the web applet when using CAD and Readings against Chronological Age.

However, the user can compare a particular patient using any three inputs: Chronological

age, Radiologists readings and CAD assessed bone age. In this section, general trends

shown from the graphical plots will be outlined. Statistical studies will be outlined in the

following section. Comparing radiologists readings and CAD results versus chronological

age, the graphs show that ethnicity and gender does have influence on the growth pattern

as shown by the variability of both CAD results as well as radiologists reading in figure

4. Variation in both the radiologists reading and the CAD results between the different

gender (figure 6) and different ethnic groups (figure 5) show that both ethnicity and gender

have an independent effect on bone age assessment. With gender, it is well documented

that females bone structure variations end earlier, making it more difficult to differentiate

between the later age groups. However, the use of different ethnic groups / populations

is novel. Assessing the G&P-based Radiologists readings, it can be seen that it correlates

well with chronological age (see figure 7), except at later ages. This can be primarily

attributed to the lack of variation in older females (see figure 6). The CAD method

sensitivity decreases at age 15+ (see figure 7). This is attributed to the lack of variation

in the current ROIs. At the time of writing of this paper an addition ROI, the Radius,

with known variation from 15-19 years is being added to remedy this problem.
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4.2 Statistical analysis between races

To study the discrepancy between races, paired-samples t-test was performed between

the chronological age and the average of two readings. Table 2 shows the mean difference

between average reading and chronological age for eight categories by race and gender.

The numbers with an asterisk represents a difference with a significant p-value of <

.05. As we can see from Table 2, radiologists using the G&P atlas are able to assess

bone age very accurately for the African American sample population and the Caucasian

male sample population. However, significant discrepancies were observed in Asian and

Hispanic groups. To study this in greater detail, the entire age range was divided into

four age groups. The Males and Females were divided in differently according to Figure 6.

Comparisons of the difference between radiologists average reading and chronological age

for two races was conducted by analysis of variance (ANOVA). The results for the four age

sets are presented in Table 3 for female and Table 4 for male. As the data in Table 3 shows,

significant mean differences of readings between races are observed at age group from 10-

14 years old. Radiologist over-read Asian cases by approximately 0.80 years compared

with their African American and Caucasian peers. In the same fashion, over-reading was

observed between the Hispanic and African American groups. Figure 6 shows the plots

of readings between the Asian female population and the Caucasian female population

as well as the Hispanic female and African American female populations. For the male

populations from the digital atlas, significant differences were the groups ranging from 11

to 16 years of age. In comparison with the African American population, Radiologists

tends to over-read Asian and Hispanic cases about a year. (Figure 7)

125



5 Conclusions

The aforementioned study represents a novel statistical analysis of bone age assessment

for differing gender and ethnic populations. Through the study we attempted to answer

the following questions: 1) Does each race have distinct bone growth patterns? and 2)

Is the G & P atlas still a good reference for bone age assessment of todays children?

Addressing the first question, the hypothesis is that genetic differences with influences

from diet and nutrition may cause variation in growth patterns, thereby influencing the

bone age assessment process. The statistical analysis (Section 3.2) discovered significant

differences for Asian and Hispanic ethnic populations, which to a certain extent nullifies

the null hypothesis. This therefore illustrates that the accuracy of the Greulich and Pyle

atlas can indeed be improved by taking ethnic population and gender into account. This

potential can be captured by a CAD trained to adapt to reading images of different

genders and populations as previously outlined. The answer to the latter question is that

until this CAD methodology is complete and compared against the Greulich and Pyle

method, the extent of which patient demographic background can be exploited to give a

more accurate bone age assessment cannot be fully determined.
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Table 12.1: Total of 1,103 cases from first Cycle Data Collection

Age group/Category ASIF ASIM BLKF BLKM CAUF CAUM HISF HISM

00 1 2 4 5 3 3 1 4

01 5 5 5 5 5 5 5 5

02 5 5 5 5 5 5 5 5

03 5 5 5 5 5 5 5 5

04 5 5 5 5 5 5 5 5

05 5 5 5 5 5 5 5 5

06 5 5 5 5 5 5 5 5

07 5 5 5 5 5 5 5 5

08 5 5 5 5 5 5 5 5

09 5 5 5 5 5 5 5 5

10 10 10 10 10 10 10 10 10

11 10 10 10 10 10 10 10 10

12 10 10 10 10 10 10 10 10

13 10 10 10 10 10 10 10 10

14 10 10 10 10 10 10 10 10

15 10 10 10 10 10 10 10 10

16 10 10 10 10 10 10 10 10

17 10 10 10 10 10 10 10 10

18 10 10 10 10 10 10 10 10

Total 136 137 139 140 138 138 136 139
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Table 12.2: CAD evaluation for eight categories by race and gender. Values in the table
represent the mean difference between chronological age and the average reading in year.
Significant mean difference is indicated by an asterisk.

* p value < 0.05

Table 12.3: Cross racial comparison of chronological age vs. reading for female. Each
block was divided into four subblocks, each of which encompasses one age set. (unit: year,
-: over read)

* p value < 0.05
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1 Abstract

The Digital Hand Atlas in Assessment of Skeletal Development is a large-scale Computer

Aided Diagnosis (CAD) project for automating the process of grading Skeletal Develop-

ment of children from 0-18 years of age. It includes a complete collection of 1,400 normal

hand X-rays of children between the ages of 0-18 years of age. Bone Age Assessment is

used as an index of skeletal development for detection of growth pathologies that can be

related to endocrine, malnutrition and other disease types. Previous work at the Image

Processing and Informatics Lab (IPILab) allowed the bone age CAD algorithm to accu-

rately assess bone age of children from 1 to 16 (male) or 14 (female) years of age using

the Phalanges as well as the Carpal Bones. At the older ages (16(male) or 14(female) -19

years of age) the Phalanges as well as the Carpal Bones are fully developed and do not

provide well-defined features for accurate bone age assessment. Therefore integration of

the Radius Bone as a region of interest (ROI) is greatly needed and will significantly im-

prove the ability to accurately assess the bone age of older children. Preliminary studies

show that an integrated Bone Age CAD that utilizes the Phalanges, Carpal Bones and

Radius forms a robust method for automatic bone age assessment throughout the entire

age range (1-19 years of age).

Keywords: Bone Age Assessment, CAD, Image Processing, Skeletal Imaging
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2 Introduction

2.1 Current Issues in Bone Age Assessment Methods

Bone Age Assessment is used in Pediatrics to determine the stage of a subjects bone

maturity during its growth from 0 to 19 years of age. Delayed or accelerated bone growth

relative to a childs chronological age may be an indication of a pathological growth pat-

tern. Examples of diseases that may cause pathological growth patterns include growth

hormone deficiency, hypothyroidism, Sotos syndrome and other genetic and non-genetic

pathologies. The Greulich and Pyle atlas published in 1950 form the basis of clinical bone

age assessment. Radiologists use the hand radiographs of children from the GP atlas

along with descriptions of hand bone growth stages to assess a patients bone age. Other

more recent but less commonly used methods include the Tanner and Whitehouse or TW2

Method developed in 1975. However both methods require the Radiologist to compare

and manually judge stages of growth relative to an atlas. Our CAD method attempts

to quantify features that correlate well with bone maturity and growth and completely

automate the process of bone age assessment.

2.2 Previous Work

Previous work by Pietka, Gertych, Pospiech-Kurkowska, et al [92] used the Phalanges

as the ROI for feature extraction. The dynamic changes in the Phalanges in children

between the ages of 7 to 16 (male) or 14 (female) years of age provided information for

bone maturity assessment within this age range. Later work by Zhang et al [89] using size

and shape-based features of the Carpal Bones allowed for assessment of younger children.

To allow for complete assessment of Bone Age in all children, another ROI was necessary.
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The Radius was chosen as the ROI of choice for older children because of its late fusion

of the proximal Metaphysis and distal Epiphysis. This phenomenon is documented in

the Greulich and Pyle Atlas as being later in the Radius as compared to the Phalanges.

Thus allowing for assessment in the degree of fusion at the older age range using wavelet

transformation based features similar to those used in the Phalanges. Due to the differing

morphology between the Phalanges and the Radius, however, a new methodology is still

necessary to extract the smaller sub-image of the growth plate region that will be used

for feature extraction via wavelet transform. This segmentation technique is based on

knowledge about the generalized morphology of the wrist. Using this knowledge along

with defined landmarks, the Radius is identified and the bounding box for the sub-image

is segmented from the larger wrist ROI.

3 Methods

3.1 Localizing the Radius

This initial methodology was developed based on previous work in the phalangeal ROI in

the hand. The wrist region is segmented from the overall image via a set of landmarks

based on the location of the Phalanges and the hand midline. The wrist ROI is then

extracted as shown in figure 1. Through textural analysis, the pixels are grouped into

three subtextures (Bone, Soft Tissue and Background) as shown in the second image in

figure 1. The bone-based texture is then removed from the other two textures. A binary

image shows the location of all pixels that are part of that texture group. Using knowledge

of the morphology of the wrist, the Radius is selected from all other bone structure and

an overall outline of the bone is formed using image processing techniques such as erosion
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Figure 13.1: Outline of Image Processing algorithm to extract Growth Plate ROI from
the larger Wrist ROI.

and dilation. In addition, knowledge of the location of the Epiphysis and Metaphysis of

the Radius allows missing smaller structures that may be identified as separate objects

to be merged to form the image of the Radius as seen in image number 4 in figure 1.

Using the width and centerline of the Radius, a box containing the growth plate is drawn

133



Figure 13.2: Enlarge Image showing the extracted Growth Plate ROI. Note the horizontal
pattern that denotes the boundary between the epiphysis and metaphysis. This boundary
lessens and eventual disappears as the child grows.

automatically by the CAD algorithm. The subimage extracted from the segmentation

process illustrated by figure 1 is shown in figure 2.

3.2 Features Extraction

After the growth plate ROI is segmented (figure 2), the sub-image is then passed onto

the features extraction algorithm, which calculates the energy, orientation and number

of edges in the sub-image and provides 12 quantitative measurements using the wavelet

transform developed for the phalanges [92]. Six of the features that show most correlated

variation with bone maturity are selected and passed on to a Mamdani fuzzy inference

system. For each feature, a set of membership functions are formed from training using

48 images from males of ages 14 to 18 years of age. Using statistical analysis of feature

values between age groups of 14, 15,16,17,18 and 19 years, groups that showed too much

variation were merged.
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3.3 Fuzzy Classification and Computation of Bone Age

The feature set for the images are divided into the two male and female cohorts for

bone age computation, since the growth patterns and in male and female children are

different[93]. For each feature, a set of 3 to 6 Gaussian membership functions were formed

using the standard deviation and means from the data. Each of these membership func-

tions represented a specific age group and depending on the feature value will contribute

to each of the computed bone age output differently. A set of simple aggregation rules

dictated how the membership functions were aggregated into the output membership

function. The output membership functions were also Gaussian-based and depended on

the standard deviation and mean of the chronological age of the 149 image training set.

For our preliminary system testing we used the same image set for training and testing.

Figure 13.3: Mamdani Fuzzy Inference System used to aggregate the feature values and
derive a Bone Age based on feature values. The system requires training with a data set
of normal children.

135



Figure 13.4: Feature values for the male cohort.

Figure 13.5: Feature values for the female cohort.

4 Results

With our initial test group of Caucasian Children between the ages of 14 and 19, there

were 149 images that were used for testing. The chronological age of these children does
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Figure 13.6: CAD Age versus Pediatric Radiologist’s Reading for the Male Cohort

Table 13.1: Mean Absolute Error of the system for the Male Cohort using Phalanges and
Radius based on the Chronological Age and Reading of the Pediatric Radiologist as the
gold standards. The absolute mean difference for the male cohort between the Pediatric
Radiologists reading and the normal childs chronological age is 0.650 years.

Phalanges Radius

ChrAge 1.246 yrs 0.814 yrs

Reading 1.030 yrs 0.918 yrs

not differ more than 3 years from the projected bone age that the Pediatric Radiolo-

gist determined. The Caucasian Children also provide us with homogeneity in ethnic

background in our dataset in case there are differences in growth patterns due to ethnic

background. From previous experience we also found that the Caucasian dataset has
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Figure 13.7: CAD Age versus Chronological Age for the Male Cohort

Table 13.2: Mean Absolute Error of the system for the Female Cohort using Phalanges
and Radius based on the Chronological Age and Reading of the Pediatric Radiologist
as the gold standards. The absolute mean difference for the female cohort between the
Pediatric Radiologists reading and the normal childs chronological age is 0.700 years.

Phalanges Radius

ChrAge 1.583 yrs 1.156 yrs

Reading 1.181 yrs 0.908 yrs

the most consistent in image quality. Our initial results show that we were able to cor-

rectly segment out the growth plate region approximately 50% of the time. Errors were

a result from (1) an inability to differentiate between the carpal bones and the radius
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Figure 13.8: CAD Age versus Pediatric Radiologist’s Reading for the Female Cohort

(2) mistaking the Ulna for the radius (3) unable to locate the growth plate sub-region

of the carpal bone accurately. More work needs to be done to improve the accuracy of

segmentation or have fail safe mechanisms when the Radius or the growth plate region

cannot be segmented. In the final integrated system, images where the Radius cannot be

used will rely on the phalangeal data for bone age assessment. The results of the feature

extraction are shown in figure 3 and 4, correlation coefficients are calculated from either

a linear regression or exponential regression depending on the feature and were indicated

by either POLY for linear polynomial or EXP for exponential. We chose to use both mea-

sures because the fuzzy inference system was able to mimic both types of trends during

training. The trends indicate that the features allow for differentiation between the lower
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Figure 13.9: CAD Age versus Chronological Age for the Female Cohort

age range of 14 to 15 and the higher age range of 17 to 19 years of age but not any higher

in age range resolution. Figures 6 to 9 shows our preliminary results of the system after

the fuzzy inference engine has computed the bone age based on the radius features. The

computed CAD bone age for the new Radius results and the previous Phalangeal results

are compared to the chronological age as well as the Radiologists Readings. Tables 1 and

2 show the generalized error for the overall testing set. Relative to chronological age, the

new system showed a decrease of about 0.3 years for males and 0.4 years for females.

5 Discussion

The GP atlas acknowledges natural growth variation in males from 14 to 17 years of age

to have a standard deviation of 10.72 to 13.05 months. [93] Therefore, any variation of
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our result to within the order of 1 year can be attributed to natural variation in the

population. In addition, our current system based on the Phalanges tapers off at 16 years

of age for females and 17 years of age for males. Therefore any ability to differentiate

between the pre-16 or pre-17 years of age and the higher age group of 18 and 19 will

be contributed significantly to the overall fuzzy bone age result. This is because final

system integration will allow the Phalangeal features to be aggregated with the Radii

features and weighed using the fuzzy inference system to yield a final CAD bone age

result. The R-squared correlation coefficients for Radius are much lower than that of

the Phalanges (approx 0.8 and above) for their optimal operational age range from 5 to

14 years. The computed bone age results show the effects of the lack of correlation in

the features. Relative to the gold standard of the chronological age, it shows a stepwise

output, with many of the computed bone ages clustered at 15.5 years and 17.5 years. The

system however still show improvements over the Phalanges in this age range but most

likely reflect the fact that Phalanges have already fully developed at this age range and

no longer have enough variability for bone age assessment.

6 Future Work

The current image segmentation techniques have a high failure rate (50 %), improvements

can be made looking at current error cases. Common problems include mistaking the Ulna

for the Radius and having an incomplete segmentation of the Radius. Adding improve-

ments to the current image segmentation algorithm will decrease the failure rates and

increase the accuracy of the segmentation. The features are highly sensitive to whether
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the demarcation of the epiphysis and metaphysis is captured therefore better segmenta-

tion will yield better feature values. For CAD system to have accuracy over the entire

0-19 year age range, the radii information has to be integrated with the current system

that uses the carpal and phalangeal information for Bone Age Assessment. How this will

be done and to ensure maximum reliability and performance has yet to be determined.

The difficulty lies in the fact that at lower age ranges the current Radii methodology will

not work as a method to determine bone age, similarly the carpal data will not work

on older children, therefore, a reliable method must be developed to cover the whole age

range by efficiently aggregating information from each of the different regions.
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1 Abstract

Previous work by Zhou et al. 2013[100] has shown that a multi-task learning framework

can be used to encode both sparsity as well as temporal smoothness in predicting cogni-

tive outcomes of Alzheimer’s Disease Neuroimaging Initiative (ADNI) subjects based on

MRI baseline features as well as other subject information. Wang et al. 2013[101] has

developed a multivariate tensor-based morphometry (mTBM) features based on para-

metric surface analysis for sparsifying machine learning methods. They have shown these

features when applied to the cortical surface outperforms standard volumetric or other

features when used for disease classification. This study aims to combine this multi-task

framework with novel multivariate tensor-based morphometry applied on to hippocampus

surface to improve prediction performance of cognitive scores 6, 12, 24, 36 and 48 months

from baseline. The hippocampus has been well studied in relation to AD and suggests

that mTBM analysis should give us a highly accurate assessment of cognitive outcomes.

We also assess the predictive power of these novel features relative to existing imaging-

based features provided by FreeSurfer as well as non-imaging features such as age, sex,

baseline test scores and genetic information.

Keywords: Alzheimers Disease, Disease Progression, Multi-task learning, fused Lasso,

ADAS-Cog, Tensor-based Morphometry, Hippocampus, Feature Selection
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2 Introduction

Recent work in psychological testing[102], genetic studies[103], magnetic resonance (MR)

imaging[104], positron emission tomography (PET) imaging[105], cerebral spinal fluid

(CSF) measurements[106], cardiovascular status[107] and others have yielded tremendous

amounts of diagnostic data for diagnosing and staging dementias, especially Alzheimers

disease (AD). Moreover, many of these studies now also include longitudinal information[108,

102]. This has lead to a problem often referred to as the curse of dimensionality, where

the size (number of dimensions) of the dataset make it difficult to do various numeri-

cal analysis on the data, thereby making it to draw all-inclusive conclusions from the

dataset. Statistical analysis together with clinical disease models have helped with de-

termine how the different sets of diagnostic information interacts with one another but

they require a large number of ad hoc assumptions and therefore does not lend itself

well to large scale Medical Imaging-based features. These problems become even more

important when trying to use Machine Learning techniques because the predictive power

of the machine learning model decreases as the number of dimensions increases when

the number of dimensions becomes too large. The question is then about how to se-

lect the ”correct” features to maximize predictive power. This paper leverages existing

sparsifying machine learning techniques with temporal priors[100], built specifically for

progressive disease models, such as AD, together with multivariate tensor-based morpho-

metric (mTBM) features [101] of the Hippocampus to try and predict AD progression up

to 48 months from the baseline MRI measurement. The goal is to evaluate the predictive

power of mTBM against those of cortical thickness and other FreeSurfer-based features,

demographic information (sex and age) as well as genetic information (ApoE-ε4 Copies).
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In their formulation, each tasked can be though of a single forward predictor from baseline

measurement to a measurement at a certain future time point. In their case, they used

the ADNI dataset and predicted ADAS cognitive scores 6 months after baseline (M06),

12 months after baseline (M12), 24 months after baseline (M24), 36 months after base-

line (M36) and 48 months after baseline (M48). In our study we aim to use the same

ADNI dataset but also incorporate mTBM hippocampus features and compare it to fea-

tures used in their study. We also attempt to combine the different feature sets to try to

evaluate the predictive power of each set of features.

The proposed cFSGL can be considered a multi-task regression problem with t time

points and from n subjects each with d features, where {x1, x2, . . . , xn} represents each of

the d input features for each subject at baseline (i.e. xi ∈ Rd). Similarly, {y1, y2, . . . , yN}

represents the target cognitive scores for each subject at N time points (i.e. yi ∈ RN ). For

a single subject (n) each task can be seen as a projection of MR / demographic / genetic

baseline measurements at t = 0 represented at xn to a future cognitive score measurement

at time t = t1 (e.g. at 48 months) given by yn(t1). We can extend this formulation to

a multi-task one by performing projections of all time points simultaneously. In other

words, each set of baseline measurements at t = 0 given by xn is projected to a vector

(RN with N time points) given by y1. The entire mapping can be summarized as a linear

operation using matrices X and Y . X and Y is formed by arranging the patient feature

space row-wise, each row being xn or yN , and yields a Rn×d X matrix and a Rn×N Y

matrix. Since this is a linear model, a set of weights W (Rd×N ) is trained to map xn

to yn or X to Y . To achieve a set of weights that encodes both sparsity and temporal

smoothness. The following cost function is minimized during training.
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min
W
‖XW − Y ‖2F + λ1 ‖W‖1 + λ2

∥∥RW T
∥∥
1

+ λ3 ‖W‖2,1 (14.1)

where ‖W‖1 is the L1-norm or lasso penalty that encodes for sparsity, ‖W‖2,1 =∑d
i=1

√∑t
j=1W

2
ij is the group Lasso penalty that encodes for temporal grouping of fea-

tures,
∥∥RW T

∥∥
1

is the fused lasso penalty, R = HT and H ∈ Rt×(t−1) where Hij = 1 if

i = j, Hij = −1 if i = j+1, and Hij = 0 otherwise that encodes for temporal smoothness.

Table 14.1: Results showing rMSE and R for M06 through M48 with and without mTBM
features. (* P < 10−3)

without mTBM with mTBM

rMSE R rMSE R

M06 8.4452 0.6124* 6.5315 0.6499*

M12 8.2058 0.6989* 6.7600 0.6948*

M24 12.3285 0.6975* 6.7292 0.7704*

M36 10.4104 0.6225* 7.1673 0.7323*

M48 7.2023 0.6223 7.1232 0.6075
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4 Multivariate Tensor-based Morphometry (mTBM) fea-

tures

Previous work by Wang et al 2013[101] has provided a strong framework for extracting

parametric surface-based features for sensitive detection of pathological changes across

multiple subjects. In this study we apply this framework but on the hippocampal surface

instead of the cortical surface.

5 Results

The results shown are from 2 simulation experiments where data from ADNI was used to

to both train and test the cFSGL model. Experiment 1 used demographic information

(Age and Gender), Freesurfer volumes and cortical thicknesses (326 features), the number

of ApoE-ε − 4 alleles as well as a baseline MMSE score as features used in the model.

Experiment 2 added the mTBM features from each of the vertices of the hippocampus

segmentation using Freesurfer. The vertex information from mTBM was scaled down by a

factor 10 using bicubic interpolation to yield a total of 2100 features. 90 percent of the 624

subjects were used for training and the remaining 10 percent were used for testing. The

results shown are from the 10 percent of our dataset allocated for testing. We calculated

the root mean square error rMSE(y, ŷ) =

√
‖y−ŷ‖22

n as well as a the correlation coefficient

between the pairs of predicted values and actual values at each of the time points.

Table 14.1 shows how predictive performance has improved by incorporating mTBM

features into our dataset.
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6 Discussion and Conclusion

Current results are from simple single iteration experiments. The performance of cFSGL

is sensitive to model parameters and more work needs to be done in carefully choosing

optimizing model parameters. However, this work goes to show that mTBM features

has the potential to improve predictive power of cFSGL models especially for later time

points.

Whether or not this approach provides more statistical power in disease progression

research requires careful validation for each application. More importantly, we anticipate

that the mTBM and multi-task learning framework may provide new insights on imaging

biomarker and machine learning in medical imaging research. In the future, we plan to

combine them for MCI or other types of disease progression studies. If our proposed

combinational framework helps improve classification accuracy, it would then support the

further use and development of mTBM measurements together with multi-task learning

for predictive applications in the medical imaging field.
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1 Abstract

ApoliopoproteinE ε4 (ApoE-ε4) polymorphism is the most well known genetic risk fac-

tor for developing Alzheimers Disease. The exact mechanism through which ApoE ε4

increases AD risk is not fully known, but may be related to decreased clearance and in-

creased oligomerization of Aβ. By making measurements of white matter integrity via

diffusion MR and correlating the metrics in a voxel-based statistical analysis with ApoE-

ε4 genotype (whilst controlling for vascular risk factor, gender, cognitive status and age)

we are able to identify changes in white matter associated with carrying an ApoE ε4 al-

lele. We found potentially significant regions (Puncorrected < 0.05) near the hippocampus

and the posterior cingulum that were independent of voxels that correlated with age or

clinical dementia rating (CDR) status suggesting that ApoE may affect cognitive decline

via a pathway in dependent of normal aging and acute insults that can be measured by

CDR and Framingham Coronary Risk Score (FCRS).

Keywords: DTI, Diffusion MRI, MRI, Alzheimer’s Disease, Dementia, ApoE, Neu-

roimaging

2 Introduction

ApoliopoproteinE ε4 (ApoE ε4) polymorphism is the most well known genetic risk factor

for developing Alzheimers Disease[109]. The exact mechanism through which ε4 increases

AD risk is not fully known, but may be related to decreased clearance and increased

oligomerization of Aβ. By making measurements of white matter integrity via diffusion

MR and correlating the metrics in a Voxel-based Statistical Analysis with ε4 genotype
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(whilst controlling for vascular risk factor, gender, cognitive status and age) we are able

to identify changes in white matter associated with carrying an ApoE ε4 allele.

3 Methods

59 subjects with ages ranging from 70− 86 years were recruited from 3 different sites in

a prospective longitudinal study of vascular contributions to aging and cognitive impair-

ment, alone or in combination with AD. ε4 positive (29 subjects carrying at least one ε4

allele) and ε4 negative (30 subjects). Vascular risk was assessed using the 10 year Fram-

ingham Coronary Risk Score (FCRS) and the subjects were categorized either as high or

low vascular risk. Dementia staging was performed using the Clinical Dementia Rating

(CDR) system. MR imaging was performed on four>3T scanners. A rigorous image har-

monization routine was performed to ensure all sequences produced comparable images

from the different scanners. T1 weighted anatomical images (SPGR / MPRAGE) were

used to coregister all the images to a common space using SPM’s DARTEL Algorithm.

b0 maps from the Diffusion images were registered to the T1 images using an affine trans-

formation. Both the affine as well as non-affine transformations were concatenated to

achieve coregistration for FA across all the subjects. Statistical Parametric Mapping was

performed using SPM8. ε4 status, CDR scores, FRCS Category, Age as well as gender

were used as covariates and factors in the Design Matrix.

4 Results

ApoE-ε4 related loss of FA was found most prominently in the parahippocampal regions

(figure 15.1) and did not overlap with regions that correlated with Age and CDR (figure
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Figure 15.2: SPM of ParaHippocampal FA values with ApoE-ε4 < no ApoE-ε4 with
Puncorrected < 0.01 and extent threshold < 10 voxels (all other covariates were set as
nuisance variables and controlled)

Vascular Cognitive Impairment is less prominent and more variable. Future work in

analyzing the complete N>200 dataset will give us the statistical power to investigate the

anatomical effects of vascular factors as well as differentiate the cognitive effects of WM

damage by correlating individual ROIs with cognitive scores.
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1 Abstract

Context: The alarming prevalence of childhood obesity poses a significant health prob-

lem for the pediatric population and future generations. Insulin resistance is thought to

be a link between obesity and the associated increased disease risk. In addition to its role

as an energy regulatory signal to the hypothalamus, insulin acts to decrease food reward

possibly through a direct alteration of dopaminergic signaling.

Aim: In the current study we examined the association of insulin sensitivity (SI) with

cerebral activation in response to food and non-food cues.

Design: Twelve Hispanic girls (age: 8-11; BMI (kg/m2): 29.9 ± 5.7) participated in two

study visits. The first visit included a frequently sampled intravenous glucose tolerance

test. The second visit included a functional neuroimaging (fMRI) session (GE HDxt 3.0

Tesla)) with visual stimulation tasks. Blocks of images (high calorie (HC), low calorie

(LC) and non-food (NF)) were presented in randomized order.

Results: For the comparison HC with NF, SI was inversely associated with activation

in the anterior cingulate (r2 = 0.65; p < 0.005), the insula (r2 = 0.69; p < 0.005), the

orbitofrontal cortex (r2 = 0.74; p < 0.005), and the frontal and rolandic operculum (r2

= 0.76; p < 0.001). Associations remained significant after adjustment for body adipos-

ity. No differences in brain activation were observed comparing LC and NF. Conclusion:

Peripheral insulin sensitivity is associated with cerebral activation in response to food

cues. Insulin resistance may lead to overeating and the exacerbation of the development

of obesity through over-activation of brain reward circuits.

Keywords: insulin sensitivity, pediatrics, brain reward, childhood obesity, functional

imaging
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2 Introduction

The alarming prevalence of childhood obesity is not only a significant health problem in

the pediatric population, but poses a risk factor for adult morbidity and mortality as well

(Must and Strauss 1999). One of the most common complications associated with obesity

is type 2 diabetes caused in part by the effects of adiposity on insulin resistance (Boyko,

Fujimoto et al. 2000). Insulin resistance is thought to be a link between obesity and the

associated increased disease risk (Lee 2006). While body adiposity and insulin resistance

are strongly associated in the adult population, the pediatric population of overweight

and obese children still present with a wide variety of insulin sensitivity (Goran, Lane

et al. 2008). Converging evidence shows that insulin as well as sensitivity to insulin is

of major importance for homeostatic, but also for the hedonic, mesolimbic regulation of

hunger and satiety (Figlewicz, Bennett et al. 2006). In addition to being an energy regu-

latory signal to the hypothalamus, insulin acts within the central nervous system (CNS)

to decrease food reward possibly through a direct alteration of dopaminergic signaling

(Figlewicz, Evans et al. 2003). In mouse cells with intact insulin reception, insulin was

shown to increase the firing frequency of dopaminergic neurons in the ventral tegmental

area (VTA), a prominent structure of the brain reward circuit (Konner, Hess et al. 2011).

The effect was abolished, when insulin reception was inactivated. While CNS insulin

production cannot be ruled out, converging evidence suggests that the majority of insulin

enters the brain through active transport from the periphery (Banks 2004). It is therefore

not surprising that manipulations of peripheral insulin concentrations were reflected in

CNS insulin alterations (Schwartz, Sipols et al. 1990). One hypothesis referred to as the

Central Resistance Model is that genetic or acquired resistance to adiposity-regulating
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hormones occurs quite commonly and undermines the ability of those hormones to bio-

logically protect against the development of obesity (Schwartz and Niswender 2004). In

human research, the existence of brain insulin resistance along with peripheral insulin

resistance was suggested after the observation of a reduction in insulin induced changes

in the global cerebral metabolic rate for glucose in insulin resistant research participants

compared to insulin sensitive participants (Anthony, Reed et al. 2006). Since insulin

resistance is so closely intertwined with body fat, it has been difficult to tease apart the

individual contribution of either one to alterations in brain reward activity. More detailed

study designs comparing lean and obese individuals found specific associations of either

body mass index (BMI) or insulin sensitivity with activity in food related resting state

networks (Kullmann, Heni et al. 2012). Results show that, especially for reward related

processing, insulin sensitivity might be of particular importance. Considering the range

of insulin sensitivity despite obesity, children appear to be well suited for a more specific

investigation of the individual contribution of insulin sensitivity and body adiposity to

altered food related brain processing, specifically highly palatable foods. Central insulin

resistance may contribute to altered food related reward perception even in the pediatric

population (Adam, Toledo-Corral et al. 2009). An uninhibited, overactive reward circuit

would then lead to overeating, setting children up for a chronic weight issue in the future.

Purpose of the current study was to assess the importance of insulin sensitivity for brain

reward activation in response to visual food cues in a pediatric population. It was hypoth-

esized that lower insulin sensitivity in the periphery is associated with stronger activation

of brain reward areas in response to high calorie food images compared to control images.

The association was furthermore expected to be independent of body fat mass.
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3 Methods

3.1 Participants

Twelve Hispanic, overweight girls were recruited through flyers and presentations at

schools and boys and girls clubs in the greater Los Angeles area. Inclusion criteria for

participants were female gender, Hispanic ethnicity, defined by all four grandparents be-

ing of Hispanic descent, Tanner stage 1 or 2, a body mass index above the 85th percentile

for age and gender (Kuczmarski, Ogden et al. 2000) and right handedness. Participants

were excluded from the study if they had diabetes, suffered from a major illness since

birth, had a condition known to affect insulin sensitivity or had a neurological illness.

Written informed consent was obtained from parents and youth assent from participants.

The study was approved by the USC IRB committee.

3.2 Procedures

TAfter obtaining informed consent, participants came to the laboratory for two separate

visits. The first visit included anthropometric and body composition measurements as

well as an overnight stay in the USC Clinical trials unit, followed by a frequently sam-

pled intravenous glucose tolerance test (FSIVGTT). The FSIVGTT took place at 8 am

following a 10-h overnight fast. The second visit included a fMRI session with visual

stimulation tasks. Visits were scheduled one week apart. All imaging sessions took place

at 3pm with the participants being instructed to not eat anything after 12 noon.
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3.3 Anthropometric measures

A pediatric health care provider conducted a medical history and physical examination

and determined maturation using the criteria of Tanner (Tanner 1981). Height was mea-

sured to the nearest 0.1cm by a wall-mounted stadiometer and weight was recorded to

the nearest 0.1kg by a balance beam medical scale. BMI and BMI percentiles for age

and gender were determined based upon established CDC normative curves using EpiInfo

2000, Version 1.1 (Flegal, Ogden et al. 2004).

Table 16.1: Anthropometric measures describing mean ± standard error of the means
(SE) and range (n = 10).

!

Table 1. Anthropometric measures  

 Mean ± SE Range 

Age (years) 9.9 ± 1.1  8-11 

Weight (kg) 59.3 ± 13.4  38.7 - 74.8 

Height (cm) 144.06 ± 7.11  129.3 - 152.1 

BMI (kg/m
2
) 29.9 ± 5.7  23.3 - 36.8 

Waist (cm) 87.7 ± 11.93  71 - 103 

Hip (cm) 90.8 ± 8.1  82 - 101 

Fat mass (kg) 24.21 ± 8.2  13.8 -34.5 

Lean mass (kg) 33.2 ± 5.8  22.8 - 41.11 

 

3.4 Body Composition

Body composition (total body fat and total lean mass) for all participants was determined

with dual-energy x-ray absorptiometry (DXA) using a Hologic Discovery A model (82702,

Hologic, Bedford, MA).
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3.5 Measures of Insulin Sensitivity

All girls participated in a FSIVGTT, assessing insulin sensitivity (SI), the acute insulin re-

sponse (AIR), and disposition index (DI). After a 12h fasting period intravenous catheters

were placed in an anticubital vein of both arms. Two fasting blood samples (-15 and -5

minutes) were followed by a 0.3g/kg body weight intravenous (iv) glucose administration

at timepoint 0. At 20 minutes, insulin (0.02 U/kg body weight, Humulin R; Eli Lilly,

Indianapolis, IN) was administered iv. Blood samples were taken at 2, 4, 8, 19, 22, 30,

40, 50, 70, 100 and 180 minutes. SI, AIR and DI as an indicator for -cell capacity was

calculated with MINMOD MILLENIUM 2003 (Bergman, Phillips et al. 1981). Blood

samples from the FSIVGTT were centrifuged for 10 minutes at 2500rpm and plasma

aliquots were frozen at -80 C until further analysis.

3.6 Analysis of blood parameters

Blood samples from the FSIVGTT were centrifuged and aliquots were stored at -80 C

until further analyses. Blood for glucose analysis was collected in fluoride tubes and

blood for insulin analysis was collected in lithium heparin tubes. Plasma was assayed in

duplicate for glucose using the glucose oxidase method and a Yellow Springs Instrument

2700 analyzer (YSI Inc., Yellow Springs, OH). Insulin was assayed in duplicate using an

ELISA kit from Linco (St. Charles, MO).

3.7 Food picture exposure paradigm

Design of the study was a block design consisting of two visual activation blocks and

control blocks presented in randomized order. All images were chosen based on previous

studies (Page, Seo et al. 2011) or through the International Affective Picture System
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(Lang 1995). Activation task blocks consisted of 10 pictures of either high calorie (i.e.

pizza, cheeseburger, candy) or low calorie food items (i.e. asparagus, broccoli, carrots).

Before, between and after activation task blocks, control blocks of 10 non-food items were

presented in randomized order (i.e. book, bus, bicycle). Compared to stimulation task

items, control items were selected based on similarity in object complexity, as well as

color, texture and shape variety. All visual stimuli were presented for 2.5 seconds with

a 0.5 second inter-stimulus interval. Pictures were projected from a Macintosh computer

onto a screen placed near the foot of the scanner, where they were viewed through a mirror

mounted on the head coil. Participants were instructed to view the series of pictures with

the intention to recall them after the scanning procedure.

3.8 Imaging and statistical analysis

MRI acquisition was conducted on a 3.0 Tesla scanner (GE HDxt) equipped with an eight-

channel head coil. Foam padding and surgical tape were used to reduce motion of the sub-

jects head. A functional echo-planar T2*(BOLD)-weighted sequence (TR: 3000 ms, TE:

25 ms, flip angle: 90◦, FOV: 192 mm, matrix: 64×64, voxel size: 3.4375×3.4375×5mm)

was used to acquire 50 volumes during the visual stimulus presentation. A T1-weighted

anatomical volume (TR: 500 ms, TE: 9.88 ms, flip angle: 90◦, FOV: 192 mm, matrix:

256×256, voxel size: 0.8594×0.8594×5mm) was also acquired at the same slice locations

as the functional sequence to allow for functional-anatomical co-registration. Visual stim-

uli were presented by PsychToolbox for Matlab (Brainard 1997). The functional images

were corrected for motion in SPM8 (Wellcome Trust Centre for Neuroimaging, London,

UK) smoothed and co-registered to the standard Montreal Neurological Institute (MNI)

template for comparison. Through the co-registration process images were sliced into 2
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x 2 x 2 mm isotropic voxel space using sinc interpolation. A statistical parametric map

was generated for each subject using the general linear model (GLM) with the stimulus

as the primary parameter of the model. To eliminate activation due to movement, 6

movement parameters were also included in the model. A box-car waveform was used as

the reference paradigm. For the statistical analysis, one participant was excluded due to

the inability to participate in the IVGTT. Another participant was excluded due to too

much head motion during the scanning process, leaving a total of 10 participants for the

final analysis. Contrast images of each subject were used for group statistics calculated as

random effects analysis at the second level, which takes variances between subjects into

account. The statistical threshold used to report group activations was set at p < 0.005.

All activated regions were identified by the Automated Anatomical Labelling software

(Tzourio-Mazoyer, Landeau et al. 2002). Variables were tested for normality and log

transformed if necessary. To assess the effect of SI and fasting insulin on brain activation

in response to high calorie, low calorie and control images, conditions were contrasted in

an ANCOVA using SI and fasting insulin as a covariate. Regression analysis was utilized

to assess the association between brain activation, body adiposity, SI and fasting insulin

concentrations. First, we computed Spatial Parametric Maps produced by either high

or low calorie activation tasks versus the non-food control condition. In a next step we

performed a 2nd level analysis by comparing maps produced by high and low calorie ac-

tivation tasks. Regions of interest were established through their correlation with SI and

fasting insulin (p < 0.005; uncorrected) and a cluster threshold of 10 voxels.
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4 Results

Mean values (±SD) of anthropometric measures and range are described in Table 1.

Three of the participating girls were in Tanner stage 1 and seven were in Tanner stage

2 at the time of study completion. All girls were of Hispanic descent (as defined by all

four grandparents identifying as Hispanic) and overweight (body mass index above the

85th percentile for age and gender). Mean fasting glucose concentrations were 91.4± 9.5

mg/dl (ranging from 79−109.5 mg/dl). Three participants had impaired fasting glucose

(IFG) according to the standards of the American Diabetes Association and therefore

qualified as pre-diabetic (2000). Fasting insulin concentrations were on average 26.69 ±

19.6 µU/ml (ranging from 3.52−50.90 µU/ml).

4.1 Brain responses to visual stimulation and SI

Significant differences in BOLD activation in response to high calorie foods and non-

food pictures (Table 2) were observed in the left caudate, left orbitofrontal cortex, the left

insula, the frontal and rolandic operculum, and the left anterior cingulate. SI was inversely

associated with activation in insula (r2 = 0.69; p < 0.005, Figure 1A), orbitofrontal cortex

(r2 = 0.74; p < 0.005), anterior cingulate (r2 = 0.65; p < 0.005, Figure 1B), frontal, and

rolandic operculum (r2 = 0.76; p < 0.001). When comparing high calorie food images

with low calorie food images, significant differences in BOLD signal were observed for the

putamen and the insula. More specifically, SI was negatively correlated with activation in

putamen (r2 = 0.74; p < 0.005, Figure 2A) and insula (r2 = 0.66; p < 0.005, Figure 2B).

Body adiposity was significantly associated with activation in all of the areas previously

listed, but was not associated with SI (p > 0.05). In a next step body adiposity was
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considered as a covariate in the regression analysis. With body adiposity as a covariate,

SI stayed independently associated with activation in all areas listed above. No differences

in brain activation were observed comparing low calorie food with non-food images.

4.2 Brain responses and fasting insulin

Significant differences in BOLD activation were observed comparing high calorie food

images with non-food control images. Fasting insulin concentrations were related to ac-

tivation in the caudate ((r2 = 0.70; p < 0.005; Figure 3A) and the insula (r2 = 0.69; p

< 0.005; Figure 3B). No differences in activation were observed in areas associated with

reward comparing high calorie food images and low calorie food images, nor did we find

differences comparing low calorie food images with non-food control images. Body fat was

not associated with activation in caudate and insula comparing high calorie food images

and non-food control images.

Table 16.2: Comparison of regional brain activation in response to high calorie food >
non food stimuli in 10 overweight Hispanic girls.

!

Table 2. Increases in regional brain activity in response to high calorie pictures vs. control pictures 

Reference coordinates

x y z kb Hemisphere Max z Effect size P < 0.005

Caudate -20 22 16 10 L 3.27 1.03 0.002

Insula -32 -24 22 12 L 3.12 0.98 0.002

Orbitofrontal cortex (OFC) -48 24 -4 34 L 3.45 1.09 0.001

Insula 38 -32 6 82 R 3.15 0.99 0.001

Insula -46 4 -6 37 L 3.02 0.95 0.002

Rolandic operculum -56 10 4 17 L 3.18 1 0.001

Anterior Cingulate -4 42 4 36 L 2.92 0.92 0.004
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Figure 16.2: Association of Insulin Sensitivity, putamen activation (parameter estimates,
PE) (Figure 2A: r2 = 0.74; p < 0.005) and insula activation (Figure 2B: r2 = 0.66; p
< 0.005), contrasting cerebral activation in response to high calorie visual stimuli > low
calorie visual stimuli.

to the idea of a co-occurrence of peripheral and central insulin resistance, which was pre-

viously suggested by other authors (Anthony, Reed et al. 2006). Insulin has been long

known as an important signal for homeostatic food intake regulation. With the increasing

utilization of brain imaging technology it became apparent, that the disruption of insulin

signaling may play an important role for overeating and the development of obesity, i.e.

through a disruption of insulin signaling in the brain reward circuit.
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Figure 16.3: Association of fasting insulin concentrations, caudate activation (parameter
estimates, PE) (Figure 3A: r2 = 0.70; p < 0.005) and insula activation (Figure 3B: r2 =
0.69; p < 0.005), contrasting cerebral activation in response to high calorie visual stimuli
> non-food visual stimuli.

In rodent studies the intraventricular administration of insulin and leptin decreased

sucrose self-administration, a task frequently utilized to measure food reward (Figlewicz,

Bennett et al. 2006). After receiving a high fat diet for five weeks, the ability of both

adiposity signals to decrease food reward was abolished, supporting the idea of central

resistance to the same.

Strikingly, the high fat animals did not gain weight different than the chow-fed control

rats, excluding weight as the responsible variable for the results.

171



It has been difficult in the past to tease apart whether associations between obesity and

brain reward activity are due to obesity or are due to the insulin resistance accompanying

obesity. Insulin sensitivity is strongly related to body weight and insulin resistance is

often thought of as the linking factor between obesity and disease risk (Cruz, Shaibi et al.

2005). There are a few recent studies that support the idea of insulin sensitivity affecting

the brain reward response to food cues, rather than obesity alone (Kullmann, Heni et

al. 2012; Jastreboff, Sinha et al. 2013). Given the fact that children present with a

wide range of insulin sensitivity despite obesity, a pediatric group of research participants

seems to be an ideal group to investigate the importance of insulin sensitivity, obesity, or

both for brain reward signaling.

Body adiposity was also positively related to activity in all of the listed areas of the

brain. However, when statistically considering body adiposity in the relationship between

insulin sensitivity and brain reward activity, we find the relationship to be independent

of body adiposity.

It is an ongoing discussion if obesity is associated with increased or decreased activity

in response to food cues and the question if obese individuals eat for compensation of

reward deficiency or due to over-activity of reward signaling, remains unanswered.

Traditionally, insulin resistance has been approached as a consequence of obesity.

Studies demonstrating the consequences of disrupted insulin signaling suggest however,

that overeating and obesity might very well be a consequence of insulin resistance, forming

a vicious cycle that becomes increasingly hard to break.

Body mass and body adiposity have been well investigated regarding their association

with cerebral activity in response to food cues. However, reports on the direction of the
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association have been controversial. While one group described a positive BMI depen-

dent activation of regions associated with food reward comparing visual high calorie with

neutral stimuli (Rothemund, Preuschhof et al. 2007), others find negative associations of

BMI and brain reward area activation (Stice, Spoor et al. 2008). So far, controversial re-

sults often have been explained by the concept of sensitivity to reward, a personality trait

that is strongly implicated in the risk for addiction and overeating (Davis, Strachan et al.

2004). Lower cerebral reward sensitivity may be an inherent predisposition prompting

the individual for constant overstimulation in order to reach average stimulation levels.

It may however also be a long-term consequence of overstimulation through an abun-

dance of high calorie, highly palatable food, resulting in neuroadaptations, i.e. receptor

downregulation. This hypothesis finds support in studies investigating dopamine, a major

brain reward transmitter. Findings from animal studies suggest that midbrain dopamine

neurons are direct targets of insulin and leptin, and that they participate in mediating

the effects of these hormones on reward-seeking behavior (Figlewicz, Evans et al. 2003).

Several studies demonstrated a lower availability of dopamine 2 receptor (D2) in striatal

regions of obese research participants (Wang, Volkow et al. 2002) or polymorphisms asso-

ciated with the D2 receptor gene (Stice, Spoor et al. 2008). In recent studies insulin was

found to play an important role for dopaminergic signaling (Konner, Hess et al. 2011),

possibly through protein kinase B (Speed, Saunders et al. 2011). Insulin receptors are

widely distributed throughout the limbic brain. We were not able to measure dopamine

activity in our research participants, but results from other studies suggest that differ-

ences in dopamine activity and reception may in part explain the results from the current

study.
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Functional imaging studies in children are often criticized due to the difficulties of

children to not move during the scanning process. We only had to exclude one participant

due to too much head movement. Other studies support that large scale fMRI studies

are feasible in children as young as five years (Byars, Holland et al. 2002). Therefore,

the advantage that young age offers for research regarding the cause and effect of health

issues weighs out practical issues of the study execution. Research studies in adults show

that abnormal neural responses to food cues persist in participants after weight loss and

that successful dieters are characterized by a strong prefrontal activation in response to

food cues (DelParigi, Chen et al. 2004; DelParigi, Chen et al. 2007; Bruce, Hancock

et al. 2011). The prefrontal cortex is involved in self-control and behavioral monitoring,

emotion regulation and salience attribution. In children, the implementation of inhibitory

choices regarding food intake is in part dependent on the morphological and physiological

development of the brain during childhood and adolescence (Gomez-Perez, Ostrosky-

Solis et al. 2003) and a progressively greater focal activation in the prefrontal cortex

during adolescent development has been observed regarding tasks that require inhibition

of behavioral responses (Tamm, Menon et al. 2002). Results from our study suggest

that chronic activation of the brain reward system may develop before the prefrontal

cortex is developed enough to inhibit the detrimental behavior of overeating, establishing

neurological patterns that predispose children for overweight and lifelong weight struggle.

Our study shows the association of peripheral insulin sensitivity with cerebral activation

in response to food cues independent of adiposity. The results therefore demonstrate the

importance of treatment of insulin resistance in addition to weight loss as a measure to

regulate neural responses to food cues to prevent excessive weight gain through overeating

and obesity.
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Chapter 17

Conclusion

1 Bone Age Assessment

In my earlier work on computer vision-based Bone Age Assessment (Chapter 12), I studied

the development of the skeletal system as it progresses from infancy to adult. I used the

qualitative and descriptive information from the Greulich and Pyle Atlas, Tanner and

Whitehouse methods and translated it into extracting imaging features. In this case, the

skeletal system was relative simple and features were based on either (1) the existence

or non-existence of a particular bone (2) the size and shape of growing bones through

development and lastly, (3) the appearance of the growth plate as it starts to fuse at the

end of development. The contrast in this case was from X-ray so image intensity is related

to bone density but most of the image processing was performed on binary images. The

conclusion from this work was that the Radius bone did provide some improvement in

detecting age changes at later age ranges. However, it is not sufficient since the system

still under performs at the later age ranges. Possible solutions include (1) Adding the

Ulna as another bone of interest and (2) Use the overall size of all the bones as a feature

to measure bone growth.
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2 Obesity

The next system we probed was the interaction between the nervous system and the

endocrine system and how that affects obesity. The hypothesis was that with obese

individuals their body does not give enough positive feedback when stimulated with low

calorie foods. This feedback is believed to be attenuated by the endocrine system. The

exact mechanism of attenuation is not known but believed to be related to insulin and

blood sugar levels.

In our initial work with Tanja Adam PhD, we designed a fMRI experiment that pre-

sented visual stimulus in the form of low calorie and high calorie foods and applied fMRI

tools to the neurobiological problem of Obesity. We measured how well the T2* BOLD

signal correlated in time with the presentation paradigm convolved with the hemodynamic

response function.

The project with Kathleen Page MD showed more understanding of how this could

influence or how the reward pathways could influence functional connectivity. Further-

more, this experiment allowed us to probe whether gut response could be different from

a visual response. With functional connectivity we are at the forefront of looking at

down-regulation instead of up-regulation and looking at overall connectivity instead of

correlation with a visual paradigm which gives us an new viewpoint / dimension of brain

function.

We then looked at how well our fMRI experiment with visual stimulus correlated with

endocrinological factors such as insulin resistance. We found that insulin as neurotrans-

mitter in the endocrine system could have a downstream effect of how the reward pathway

reacts to low and high calorie foods.
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3 Aging and Dementias

We then turn our attention to white matter damage and dementia. This project was

particular challenging because there are no standard methods for characterizing neuronal

damage in vivo. The main methods of imaging white matter damage has been White

Matter Hyperintensities (WMHs) using FLAIR MRI. White matter is particular difficult

because of the structured nature of the fiber bundles and neurons. Histology of White

Matter post-mortem has driven how we look at in vivo ways of imaging white matter.

The histological understanding, together with our understanding of aging allows us to

postulate what may be contaminating our white matter diffusion signal.

In our CSF contamination chapter, we were able to design a contamination correction

technique based on the biological phenomenon of brain atrophy where CSF partial volume

increases as the brain tissue atrophies.

Similar to the idea with insulin modulating the reward system, we postulated that

a genetic factor could be modulating white matter damage. Using a similar framework

but with the diffusion MRI metric instead of the fMRI statistical parametric map, we

correlated each voxel with the subject’s genetic factor status- in this case, we looked

at whether the subject is a (1) non-carrier (2) homozygote or (3) heterozygote of the

ApoE-ε4 gene. This allowed us to ask whether this genetic factor modulates white matter

decline. In this case we assumed that the process can be approximately linear since we

are using the general linear model but the modulation could very well be non-linear and

an extension of this work could be to try to model this interaction non-linearly.

For voxel-wise methods, detection becomes very computationally intensive since we are

correlating each voxel with each of the co-factors. To make the problem computationally
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viable we mainly assumed linearity in modulation of voxel values by other factors such

as insulin or genetics, but we believe this a reasonable assumption since our domain

knowledge of most biological systems informs us that tissue metrics measured via imaging

tend to have monotonic modulation functions. For example, the deterioration of FA values

should be approximately linearly modulated by the genetic factor ApoE.

With features from the bone age assessment work, we have much lower dimensionality

since we are not doing voxelwise analysis, therefore we were able to use higher order

classification / correlation models such as fuzzy logic. I believe that this may be also

possible with some of the voxelwise MRI work if we are able to do some reasonable

dimension reduction using domain knowledge. However, I also believe that most changes

are dictated by monotonic modulation functions and therefore can be detected by linear

models. Moreover, even if you use higher order methods for high dimensional feature

spaces, the fit is only as good as the quality of the feature space and high order methods

do not substitute for better SNR or better domain knowledge-based definition of the

feature space.

4 Generating Meaningful Imaging Contrast

Throughout this thesis we’ve been designing metrics or image contrasts that correlates

well with either brain function or some pathological state in the tissue. In the imaging

of obesity, we assume that the T2* Blood Oxygen Level Dependent (BOLD) activity

is correlated with brain activity but we know that there are vascular effects that could

displace the signal away from the exact location of brain activity. However, with this type

of study it is reasonable just to deconvolve the Hemodynamic Response Function (HRF)
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which is essentially the point spread function of the BOLD effect. We then correlate

the deconvolved T2* BOLD time sequence with the time sequence of the presentation

paradigm.

If we assume that the HRF is uniform across the entire brain, we can then do the

analysis without deconvolving the hemodynamic response function and do voxelwise cor-

relations to look at functional connectivity. There still needs to be work done on correla-

tion due to vascular changes and how this affects brain connectivity. Obviously vascular

changes are part of the response to brain activity and whether that is something that

we consider actual brain activity. The actual brain activity that we want to detect is

action potentials going the neuron causing the release of neurotransmitters. However the

surrogate event is the vascular response to the need for more energy as modeled by the

HRF that is measured by the T2* BOLD signal. The question is how well this surrogate

event correlates with actual action potential based brain activity. There could be global

vascular effects that can cause this assumption to be violated. Moreover, local vascular

effects due to differences in ”plumbing” could also detect differences that are not due to

brain activity. The connectivity to seem connected as seen by correlation but may be

purely due to vascular effect.

An extension to the fMRI BOLD experiment, especially relating to the high and

low calorie foods, another novel contrast would be the correlation or the second level

correlation of the t-scores from the T2* BOLD signal’s correlation with the presentation

paradigm. The correlation of the correlation would then be the second level analysis,

where these t scores are correlated with a subject’s amount of insulin sensitivity. This

ties back to the first goal of using demonstrating how domain knowledge can be used to

build hypothesis. Our understanding of how the brain works tell us that the difference
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of BOLD signal correlation with the presentation of low calorie foods versus with high

calorie foods could be modulated by insulin sensitivity and we could then use this two

level statistical approach to detect this difference.

Moving on to white matter imaging contrast with diffusion MRI, once again our under-

standing of the domain knowledge allowed us to definite what meaningful contrast in this

case means. We realized that meaningful contrast in the context of white matter imaging

is the an accurate measurement of the actual fibers. Certainly, the amount of CSF partial

volume may be correlated with how much white matter atrophy exists at a single voxel.

These atrophic effects tend to be non-focal and widespread in the brain. However, what

we really need in our FA maps are measurements without the CSF signal. The atrophic

effects of the brain are much better measured by morphometric methods, which looks at

are how much the brain deforms as it ages. Although we haven’t looked at CSF partial

volume as a measure of brain atrophy because we aren’t able to accurately measure the

CSF partial volume accurately yet. Certainly, the changes based on CSF partial volume

as measured by DTI are not useful because they are non-focal. Therefore the DTI signal

without CSF partial volume should give us more interesting information about the more

focal white matter damage. This extends to our voxelwise analysis with the genetic factor

ApoE4 which mirrors our second level fMRI analysis with insulin sensitivity, where we

would like to look for focal changes and not these brain wide effects.

This general model framework also allows us to look at multiple covariates and not

only ApoE4. With our poster in ISMRM we showed that we can separate voxelwise

correlations of white matter tissue measures such as FA with multiple covariates such

as ApoE4 and Age, giving us the possibility of separating the effects of each of these

covariates on white matter deterioration.
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5 Pattern Detection

Last but not least we evaluate our goal of designing computation techniques for pattern

detection. With the bone age assessment, we applied a number of machine learning

techniques to the bone age assessment system. We applied ANN techniques but we found

that the fuzzy logic system was quite adequate in weighting the different features to give

an accurate prediction of bone age. However, we did evaluate applying Support Vector

Machine (SVM) on highly non-linear feature spaces and may be worth trying since it is

quite robust. But the common theme here is that the computation technique is as good

as the feature space and the feature space has to very robust and finely tuned for the

pattern that you are looking for. In the case of bone age assessment, we found that the

improvements in prediction power either ANN or fuzzy logic was comparable and there

is simply not enough information in the radius bone to accurate predict the last couple

of years of development. Therefore beyond better computation techniques we need more

information in our feature space.

There has also been attempts at using Massive Artificial Neural Network using a whole

image as an input with many hidden layers. Not only is training such massive artificial

neural network (MANN) difficult, and computationally inefficient but the results often

run into problems with over fitting (citation). The bone age assessment project was a

good first step at applying computational techniques for pattern detection in medical

imaging since we have both the pediatric radiologist’s reading of the bone age as well

as the normal subject’s chronological age as targets. The advantage of the computation

technique in this case is also much obvious since the computer vision is known to be more
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consistent than inter-reader variation. Moreover, computer vision does not suffer from

fatigue that a human reader would.

We were also able to apply the general linear model to both the obesity imaging

fMRI work as well as the diffusion MRI white matter imaging work to investigate how

non-imaging factors modulate the imaging measures. The main computational technique

capstone project was the application of convex fused sparse group lasso in predicting

disease progression. Although the technique was developed by our collaborating at Ari-

zona State University, our understanding of domain knowledge (in this case dementia)

definitely allows us to have a better idea of how to fine tune the system for maximum

performance. Moreover, it is interesting to look at how the lasso portion of the algorithm

behaves in dimension reduction in this high dimensional features space.

6 Future Work

The RadSearch project is not yet fully complete. We have not explored how the system

can be implemented whilst being HIPAA compliant.

The Obesity Neuroimaging work unfortunately is no longer on-going at USC. I still

believe that it is extremely interesting to look at the differences between gut-based stim-

ulus response and taste-based stimulus response. I believe the gut, which is an often

neglected part of the nervous system, may hold the keys to understanding obesity and

our perception of food-based stimuli. This becomes even more compelling, especially,

when you look at development and how the gut develops by separating from the brain

stem. Furthermore, the interaction between the gut and the brain is not well known and it

would be interesting to develop fMRI / EEG techniques that could sensitive to activity in
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that part of the nervous system. With the on-going obesity epidemic, the idea of obesity

as a pathology has been more accepted and more work needs to be done on finding the

origins of this pathology. This is predicated on seeing how the brain reacts differently to

different stimulus based on different obesity statuses. I believe that information will help

support the increasingly accepted view that obesity is not just a lack of motivation but a

pathology of the reward pathways and thus has a lot of socioeconomic and public health

implications. Endocrine-Nervous interactions are also of interest, especially in clarifying

the causal relationship between insulin sensitivity developed and reward pathway changes.

With the diffusion MRI work, our lab’s ICA has the potential of changing what white

matter DTI information can be acquired during a routine clinical scan. Moreover, promis-

ing model-based reconstruction techniques using a dictionary techniques as well as work

with higher order might be necessary to understanding what is going on. Moreover, met-

rics that are more than tensor-based metrics such as FA and MD may also be helpful.

However, whatever new metrics are developed should maintain the advantages of the

tensor model; The model should be orientation invariant and scanner agnostic.

Moreover, I would still like to model the diffusion signal as Wide Sense Stationary

signal (WSS) and leverage the pool of probabilistic signal processing techniques to model

the diffusion signal. Moreover, Van Wedeem’s work at getting gold standard high angular

resolution scans of the brain might allow us to build better model-based diffusion MRI

methods.

I am also still interested in looking at functional Diffusion MRI. During my PhD we

tried for 6 months to use the diffusion MRI signal as the surrogate signal for neuronal

activity. Our work suggests that this might be possible although better signal processing
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techniques are still needed to determine a robust point spread function relationship be-

tween the diffusion effect and neuronal activity. Moreover, I don’t believe that we have

fully fine tuned the diffusion MR pulse sequence to look at the diffusion time resolution

necessary for signal changes from neural activity. I also believe that although high b-value

(greater than 4000) diffusion scans have very low SNR, a lot of interesting information

exists in measuring small diffusion distances. Moreover, we are not unfamiliar with this

low SNR environment and is not unlike the SNR of T2* BOLD images. Furthermore, I

believe that the diffusion MRI image reconstruction engine from our MRI scanners may

have filtered out some of the meaningful signal when bringing the signal from the fre-

quency to the spatial domain. Therefore, I believe that analysis using the raw k-space

data may yield better results.

With the machine learning / computational technique works, we have yet to see any

techniques in the clinical space suggests that more work done is necessary in translating

these techniques into the clinic. It is telling that the bone age assessment system has not

been applied even though we have a very low dimension feature space in this case.

184



References

[1] N. Tzourio-Mazoyer, “Automated anatomical labeling of activations in spm using
a macroscopic anatomical parcellation of the mni mri single-subject brain,” Neu-
roImage, vol. 15, no. 1, pp. 273–289, 2002.

[2] D. L. Sackett, “Evidence-based medicine,” in Seminars in perinatology, vol. 21,
pp. 3–5, Elsevier, 1997.

[3] V. Yaghmai, S. Kuppuswami, J. W. Berlin, and S. A. Salehi, “Evaluation of personal
digital assistants as an interpretation medium for computed tomography of patients
with intracranial injury,” Emergency Radiology, vol. 10, no. 2, pp. 87–89, 2003.

[4] D.-K. Kim, S. K. Yoo, and S. H. Kim, “Instant wireless transmission of radiological
images using a personal digital assistant phone for emergency teleconsultation,”
Journal of telemedicine and telecare, vol. 11, no. suppl 2, pp. 58–61, 2005.

[5] W. M. Tellis and K. P. Andriole, “Integrating multiple clinical information systems
using the java message service framework to enable the delivery of urgent exam
results at the point of care,” Journal of Digital Imaging, vol. 18, no. 4, pp. 316–325,
2005.

[6] B. Raman, R. Raman, L. Raman, and C. F. Beaulieu, “Radiology on handheld
devices: Image display, manipulation, and pacs integration issues1,” Radiographics,
vol. 24, no. 1, pp. 299–310, 2004.

[7] U. Tachinardi, M. de Sa Rebelo, P. de Magalhaes Oliveira Jr, and P. Pilon, “Real
time information from bedside monitors as part of a web-based patient record.,”
in Proceedings of the AMIA Symposium, p. 691, American Medical Informatics
Association, 2001.

[8] B. J. Liu, L. Documet, J. Documet, H. Huang, and J. Muldoon, “Wireless remote
control clinical image workflow: utilizing a pda for offsite distribution,” in Medical
Imaging 2004, pp. 178–184, International Society for Optics and Photonics, 2004.

[9] J. Documet, B. J. Liu, L. Documet, and H. Huang, “Wireless remote control of
clinical image workflow: using a pda for off-site distribution and disaster recovery,”
Journal of the American College of Radiology, vol. 3, no. 7, pp. 520–527, 2006.

185



[10] J. Documet, R. Shretha, K. Wang, and L. B.J., “A vendor agnostic real-time patient
dashboard to monitor patient workflow in a radiology department.,” in Presented
at Radiological Society of North America’s Annual Meeting, 2007.

[11] A. Pyrros, P. Nikolaidis, V. Yaghmai, S. Zivin, J. I. Tracy, and A. Flanders, “A
bayesian approach for the categorization of radiology reports,” Academic radiology,
vol. 14, no. 4, pp. 426–430, 2007.

[12] C. Friedman, P. O. Alderson, J. H. Austin, J. J. Cimino, and S. B. Johnson, “A gen-
eral natural-language text processor for clinical radiology,” Journal of the American
Medical Informatics Association, vol. 1, no. 2, pp. 161–174, 1994.

[13] Y. Huang and H. J. Lowe, “A grammar-based classification of negations in clinical
radiology reports,” in AMIA Annual Symposium Proceedings, vol. 2005, p. 988,
American Medical Informatics Association, 2005.

[14] Y. Huang and H. J. Lowe, “A novel hybrid approach to automated negation de-
tection in clinical radiology reports,” Journal of the American Medical Informatics
Association, vol. 14, no. 3, pp. 304–311, 2007.

[15] B. Desjardins and R. C. Hamilton, “A practical approach for inexpensive searches
of radiology report databases,” Acad Radiol, vol. 14, pp. 749–56, Jun 2007.

[16] V. Bashyam and R. K. Taira, “A study of lexical behavior of sentences in chest
radiology reports,” in AMIA Annual Symposium Proceedings, vol. 2005, p. 891,
American Medical Informatics Association, 2005.

[17] P. Szolovits, “Adding a medical lexicon to an english parser,” in AMIA Annual Sym-
posium Proceedings, vol. 2003, p. 639, American Medical Informatics Association,
2003.

[18] C.-H. Hsiao, T.-C. Hsu, J. N. Chang, S. J. Yang, S.-T. Young, and W. C. Chu,
“Developing a medical image content repository for e-learning,” Journal of Digital
Imaging, vol. 19, no. 3, pp. 207–215, 2006.

[19] R. Jakobovits, J. F. Brinkley, C. Rosse, and E. Weinberger, “Enabling clinicians,
researchers, and educators to build custom web-based biomedical information sys-
tems.,” in Proceedings of the AMIA Symposium, p. 279, American Medical Infor-
matics Association, 2001.

[20] W. Ceusters, P. Spyns, and G. De Moor, “From natural language to formal language:
when multitale meets galen,” Studies in health technology and informatics, pp. 396–
400, 1997.

[21] W. Ceusters, P. Spyns, and G. De Moor, “From syntactic-semantic tagging to
knowledge discovery in medical texts,” International journal of medical informatics,
vol. 52, no. 1, pp. 149–157, 1998.

186



[22] C. E. Kahn and C. Thao, “Goldminer: a radiology image search engine,” American
Journal of Roentgenology, vol. 188, no. 6, pp. 1475–1478, 2007.

[23] Y. Huang, H. J. Lowe, D. Klein, and R. J. Cucina, “Improved identification of noun
phrases in clinical radiology reports using a high-performance statistical natural lan-
guage parser augmented with the umls specialist lexicon,” Journal of the American
Medical Informatics Association, vol. 12, no. 3, pp. 275–285, 2005.

[24] V. Bashyam and R. K. Taira, “Indexing anatomical phrases in neuro-radiology
reports to the umls 2005aa,” in AMIA Annual Symposium Proceedings, vol. 2005,
p. 26, American Medical Informatics Association, 2005.
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