
Introduction

Recent work in psychological testing,3 genetic studies,4 magnetic resonance (MR) imaging,5 positron emission 
tomography (PET) imaging,6 cerebral spinal fluid (CSF) measurements,7 cardiovascular status8 and others have 
yielded tremendous amounts of diagnostic data for diagnosing and staging dementias, especially Alzheimers 
disease (AD). Moreover, many of these studies now also include longitudinal information.3, 9 This has lead 
to a problem often referred to as the curse of dimensionality, where the size (number of dimensions) of the 
dataset makes it difficult to do various numerical analysis on the data. This in turn makes it increasingly 
difficult to draw consistent conclusions from the dataset. Statistical analysis together with clinical disease 
models have helped with determine how the different sets of diagnostic information interacts with one another 
but they require a large number of ad hoc assumptions and therefore does not lend itself well to large scale 
Medical Imaging-based features. These problems become even more important when trying to use machine 
learning techniques because at some point the predictive power of the model ceases to increase even though 
we’re adding more information or dimensions. The question is then about how to select the ”correct” features 
to maximize predictive power. This paper leverages existing sparsifying machine learning techniques with 
temporal priors,1 built specifically for progressive disease models, such as AD, together with multivariate 
tensor-based morphometric (mTBM) features10 of the Hippocampus to try and predict AD progression up 
to 48 months from the baseline MRI measurement. The goal is to evaluate the predictive power of mTBM 
against those of cortical thickness and other FreeSurfer-based features, demographic information (sex and 
age) as well as genetic information (ApoE-ε4 Copies).

Methods

AFNI DATA: Data used in the preparation of this article were obtained from the Alzheimers Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

•	616 subjects
•	M06, 606 M12, 533 for M24, 364 for M36 and 97 for M48. 90% of the data was used for training and 

10% used for testing.
•	20 different selection splits of training and testing.
•	More information about the demographics and patient selection is available in Zhou et al 2013.1

cFSGL (convex Fused Sparse Group Lasso) : 
•	Prediction of each Time Point can be seen as a Task
•	The multi-time point outcomes prediction can be reformulated as a Mult-task learning problem
•	Performs much needed Dimension Reduction via the sparsifying Group Lasso penalty
•	Simultaneously trains all time points (i.e. performs all tasks simultaenously) to preserve temporal 

smoothness
•	Accomodates missing time points in training data

Multivariate Tensor-based Morphometry (mTBM) features of the Hippocampal Surface: 
•	Hippocampus Segmentation via FSL11

•	Parametric Meshes to Model Hippocampal Shapes
•	Novel inverse consistent surface fluid registration2

•	mTBM and radial distance computed via surface deformation analysis2

Results
•	Predictions using mTBM significantly outperform prediction without using mTBM (Fig. 1 and 2)
•	Improved prediction accuracy as shown via nMSE, wR and rMSE in Table 1 and Fig. 4.
•	Average weights for one of the mTBM surface features across the 20 trials is shown in Fig. 3.

Discussions and Conclusions
•	Improved performance by merging fused mult-task learning with temporal smoothing and Novel AD 

sensitive surface mTBM maps

•	Achieved some of the highest performing predictions based on baseline data only and is consistent with 
our survey of other comparable studies.1

•	Need to investigate more about how to meaningfully incorporate mTBM map weights into the machine 
learning algorithm, to encode for neighborhood connectivity. (Currently, we use one continuous vector 
for all features)

•	Serves as an illustration of how machine learning methods can be used to perform dimension reduction 
and how spatial data can be used directly. Possible applications in fMRI, fcMRI and other population 
studies

•	Need more methods in analyzing the resultant weights, currently exploring stability selection.

•	Weights analysis can also be used to optimize algorithm by providing a more reasonable starting point 
during training.
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Figure 4:
 Bar Chart of the rMSE of predictions with and without mTBM features by time point
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